A statistical analysis of the peak SGM acceleration demands for nonstructural components (NSCs) supported on inelastic regular moment-resisting frame structures exposed to 40 near-field pulse like ground motions is presented. Peak component acceleration (PCA) demands were quantified based on the floor response spectrum (FRS) method with consideration of dynamic interaction effects. This study evaluated the main factors that influence the amplification or decrease of FRS values caused by inelasticity in the primary structures (ATC, 2004; Singh et al., 2006). While FRS values at the initial modal periods of the supporting structure are reduced due to inelastic action in the primary structure, the region between the modal periods experiences an increase in PCA demands. Here, acceleration response modification factor (R_{acc}) has been proposed as a parameter to quantify this reduction/increase in PCA demands. The R_{acc} factor is defined as the FRS for linear elastic primary structures normalized by the FRS for an inelastic primary structure. The terms ‘elastic’ and ‘inelastic’ refer to the behavior of the supporting structure, while elastic NSCs are used in this study. As it can be seen in Figure 1, linear, nonlinear and the ratio of linear/nonlinear floor response acceleration in the last floors of 4 and 8 story structures are presented. It is clear that in the stiffer structure the R_{acc} is higher than the other.

This study tries to evaluate the dependence of the proposed acceleration response modification factor (R_{acc}) on various structural parameters and characteristics (i.e. the location of the NSCs, period of the component and period of the supporting structure) (Miranda and Taghavi, 2005; Medina et al., 2006). This proposed factor has the potential to be used similar to strength-reduction factors for primary structures to scale the elastic FRS to obtain the inelastic FRS. The advantage of
using the parameter R_{acc} is that it can address both the increase and decrease in elastic FRS values due to yielding of the supporting structure. In Figure 2, R_{acc} factor is compared due to the location of the NSCs (Sankaranarayanan and Medina, 2006).

This observation clarifies the importance of the location of the NSCs and the parameter T_c/T_i where T_i is the period of vibration of the ith mode in the quantification acceleration demands of NSCs mounted on inelastic frames.

REFERENCES

Figure 2. R_{acc} in different floors of 4 & 8 story buildings