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ABSTRACT

Evolution has been the nature’s solution to the survival issues of living creatures in direct response to
their living environment in which physical forces are dominant. The investigation of bio-forms and how
these forms are structurally stable and equilibrated, reveal the fact that life utilises tensegrity systems for its
physical and mechanical incarnation. According to the literature, a tensegrity system is a tensionally
integrated medium which comprises of a continuous set of tensile elements (or cables) supported by a
discontinuous set of compressive elements (or struts). A tensegrity structure is stabilised by the sets of self-
stresses borne in its elements. Ever since the tensegrity structures’ concept was proposed and patented, major
research attempts have performed on static stability, form-finding and structural behaviour of this type of
structures. Recently in some limited works, the dynamic characteristics and analyses of tensegrity structures
have been discussed. These studies state some proposed analytical formulations for general dynamic
characteristics and response of tensegrity structures of which form-finding process is done beforehand and
the static self-stress set is determined and accepted as the design self-stress set during the dynamic analyses.
In the present work the tissue structure has been opted representing the proposed tensegrity structural
biomimicry. A tissue context has a hierarchical formation in which cells’ cytoskeletons are its space-filler
building blocks. Cytoskeleton is a structural unit composed of filamentous biopolymers that mechanically
stabilises the cell and actively generates self-stresses resisted by external adhesive tethers to the extracellular
matrix or fascia. The fascia is a purely tensile network whose duty is binding the structural blocks, filaments
and other hierarchical formations in the tissue and integrating its structural behaviour. Thus, cytoskeletons
and fascia form a synergetic tensegrity system.

This paper aims to investigate the dynamic stability of the proposed fascia-cytoskeleton tensegrity
system under earthquake loading considering the self-stress set and connectivity as dynamic variables. In this
regard, optimisation techniques are applied in the tensegrity dynamic analyses to trace its equilibrium at
discrete time steps. The results include optimum connectivity and self-stress set for the tensegrity system.
The final outcome of the optimised dynamic stability analyses is a tissue-mimicedtensegrity structural
component and the initial dynamic design self-stress set which satisfies the equilibrium, stability and limit
constraints during the time span in which the design dynamic loading is exerted on the structure.

INTRODUCTION

Biomimicry, bionics or biomimetics is an emerging field that proposes alternative ways of thinking
about sustainable engineering solutions through or inspired by nature. Biomimetics refer to human-made
processes, substances, devices or systems that imitate nature and have led to development to new
biologically inspired forms, systems and materials based on biological analogues (Bruck et al., 2002). Nature
is the best teacher and biomimicry is about choosing what nature does rather than what it looks like. It is a
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conscious emulation, not only the emulation of form but also the emulation of functionality and process
(Benyus, 1997).

The development of lightweight and high strength biologically inspired structures offer promising
alternatives for addressing many of the engineering grand challenges, most importantly for developing
sustainable and environmentally friendly materials and infrastructure systems. In this regard, learning from
living creatures is a logical approach, as their biological systems have evolved over millions of years to adapt
themselves to their natural environment. Evolutionary examples show how nature has helped organisms to
overcome their structural weaknesses (Chen et al., 2012).

Therefore, a successful and useful study of bio-inspired structures necessitates investigation for
mechanics of the bio-structures' system which is believed and tested to be regarded as some types of
tensegrity structures. Tensegrity structures show a non-linear mechanical behaviour in response to external
loads and they have to maintain a state of pre-stress for their static stability. In order to find the stable modes
of a tensegrity structure, one should perform a form-finding analysis in which the physical and geometrical
shape is determined.

Due to their unique and fascinating properties, tensegrity structures are becoming more and more
common in civil (e.g., domes, bridges, towers, roofs, deployable structures) and mechanical (e.g., robots,
aerospace, special mechanisms) engineering. They present elegant appearance together with high strength-to-
weight ratios (BelHadj Ali et al., 2010; Maceri et al., 2011). Tensegrity structures consist of a continuous set
of cables supported by discontinuous struts. The word tensegrity is a contraction of “tensile integrity”, as
described by Fuller: “islands of compression inside an ocean of tension” (Lian et al., 2012). A tensegrity
configuration is said to be compatible if it ensures tension in cables and compression in bars. The definition
classifies a tensegrity structure as any structure realised from cables and struts, to which a state of prestress is
imposed that imparts tension to all cables. The state of prestress serves the purpose of stabilising the
structure and it is the first obstacle in the design of tensegrity structures (Guest, 2011; Lazopoulos, 2005;
Murakami and Nishimura, 2001; Tibert and Pellegrino, 2003). Thus, the self-stress level should be taken into
account as a design variable together with the cross-sectional areas of tensioned and compressed members.
Tensegrity frameworks have benefits over traditional approaches. These benefits can be mentioned as:
efficiency, deployability, easily tunable (the pre-stress in elements of the tensegrity system allow the
designer to modify its stiffness. Therefore, the way the structure behaves when external forces are applied as
well as its natural oscillation frequency can be easily modified), easily modeled (due to the tensegrity design
rules, whichever the external force applied to its elements, they only carry axial forces), redundant
(tensegrity can be seen as a special class of structures whose elements may simultaneously work as sensors,
actuators and load-carrying elements), scalability and biology inspired (JuanandTur, 2008).

CELL AND TISSUE STRUCTURES

One of the informative examples of the last century which makes it possible to draw a parallel between
natural and architectural morphogenesis is geodesic-dome structure in comparison with the molecules of
fullerenes, some macromolecular complexes in animal cells and skeletal structures of the protozoan radiolaria.
Fullerenes, the new form of carbon, are named in honour of Buckminster Fuller (1895-1983).

While a single cell evolves, physical laws dictates how the cells structurally relate to one another.
Crowded together, they close pack and follow the rules. It is energy efficient for cells to specialise and
therefore cells evolve into tissues. The skeleton of a cell is its microtubules, which is a tensegrity structure,
and its muscle actin, forms a tensegrity network. Mammalian cells control their shape and function by altering
their mechanical properties through structural rearrangements. To carry out certain behaviours like crawling,
spreading, division or invasion, cells must modify their cytoskeleton to become highly deformable and almost
fluid-like whereas to maintain their mechanical integrity when mechanically stressed, the cytoskeleton must
behave like an elastic solid. Cells control their mechanical behaviour by altering the level of self-stress borne
by the cytoskeleton. Self-stress refers to the pre-existing tensile stress that exists in the cytoskeleton prior to
application of an external load (King, 2011). This prestressis transmitted over intermediate filaments and
resisted by adhesive tethers to extra cellular matrix (ECM) known as focal adhesions. These observations are
consistent with the idea that the cytoskeleton is organized as a tensegrity structure.

Confirmed by laboratory tests, the elastic tensegrity unit serves as a conceptual model for the cell as
well as other biological systems above and below the cell in the organic systems hierarchy (e.g., tissue,
nucleus). Cells may be described as tensegrity structures as they generate their own tensional forces and
exhibit an architectural integrity independent of gravity. In the proposed tensegrity model of cells, tension is
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borne and generated mainly by the microfilaments, especially in conjunction with myosin and also by
intermediate filaments and by the membrane itself as the surface tension. Compression is bornemainly by
microtubules. Figure 1 depicts a cell with its tensile and compressive elements. Higher order tissue
architecture may be constructed as a result of specific binding affinities between basement membrane (BM),
molecules which are architectural anchoring foundations, and other ECM components that are produced by
neighbouring epithelial and mesenchymal societies.

Cells are known to exhibit time and rate of deformation dependent viscoelastic behaviour. The dynamic
stiffness of the cytoskeleton of adherent cells increase with the frequency (ω) of the imposed deformation, as a
weak power law,(ωα), where αis a variable that takes a value between zero and one (King, 2011). In the limit
ofα 0, the stiffness becomes independent of ω, indicating elastic solid behaviour, whereas in the limit of
α 1, it becomes proportional to ω, indicating viscous Newtonian fluid behaviour. Between these two limits
the system behaves viscoelastic. There is an inverse relationship between αand prestress,P, of the cytoskeleton.
Then Pcontrols the transition between solid-like and fluid-like behaviours of the cell.

Biotensegrity has been well adapted to living organism structures in the cell level (Lian et al., 2012).
In cellular tensegrity model tensional force in cytoskeletal microfilaments and intermediate filaments, are
balanced by internal microtubule struts and ECM adhesions in compression. Furthermore, tensegrity
structures have been proposed to explain how various types of cells (e.g. nerve cells, smooth muscles, etc.)
resist shape distortion (Sultan et al., 2002). A more practical engineering research provides understanding of
biotensegrity principle and its potential to robotics.

In the three-dimensional tissue engineering scaffolds that resemble the in-vivo environment of the
ECM, one approach to modelling open-cell foams is to apply structural mechanics to a periodic unit cell or
the cell itself that packs to fill space. A Tetrakaidecahedron unit cell is often used to represent the geometry
of open-cell foams as it packs to fill space and has morphology similar to that of low density foams.

In one of Plateau's most beautiful soap experiments, a wire cube is dipped in soup solution (Figure 2,
left). When lifted out, a film is seen to pass inwards from each of the twelve edges of the cube and these
twelve films meet three by three in eight edges running inwards from the eight corners of the cube
(Thompson, 1942), but the twelve films and their eight edges do not meet in a point. They are grouped
around a small central quadrilateral film. Lord Kelvin made a remarkable conclusion that the square fenestra
with the four quadrilateral films impinging on its sides in Plateau's experiment, represented the one-sixth part
of a symmetrical figure, that this figure when complete was bounded by six squares and eight hexagons that
by means of assemblage of these fourteen-sided figures, or Tetrakaidecahedron, space is filled and
homogeneously partitioned with an economy of surface in relation to volume ((Figure 2, right).

DYNAMIC STABILITY OF THE TETRAKAIDEKAHEDRONTENSEGRITY

TETRAKAIDECAHEDRON TENSEGRITY MODULE FORM FINDING

To seek the statically stable form of a tensegrity module, a rank minimisation technique is utilised in
which the nodal equilibrium is guaranteed and tensegrity assumptions are considered as constraints (Taheri
and Kuang, 2014). This optimisation problem is formulated as follows,

Figure 1: The tension and compression structures in a cell, actin microfilaments are intension and microtubules
are in compression

International Institute of Earthquake Engineering and Seismology (IIEES) 3

SEE 7

borne and generated mainly by the microfilaments, especially in conjunction with myosin and also by
intermediate filaments and by the membrane itself as the surface tension. Compression is bornemainly by
microtubules. Figure 1 depicts a cell with its tensile and compressive elements. Higher order tissue
architecture may be constructed as a result of specific binding affinities between basement membrane (BM),
molecules which are architectural anchoring foundations, and other ECM components that are produced by
neighbouring epithelial and mesenchymal societies.

Cells are known to exhibit time and rate of deformation dependent viscoelastic behaviour. The dynamic
stiffness of the cytoskeleton of adherent cells increase with the frequency (ω) of the imposed deformation, as a
weak power law,(ωα), where αis a variable that takes a value between zero and one (King, 2011). In the limit
ofα 0, the stiffness becomes independent of ω, indicating elastic solid behaviour, whereas in the limit of
α 1, it becomes proportional to ω, indicating viscous Newtonian fluid behaviour. Between these two limits
the system behaves viscoelastic. There is an inverse relationship between αand prestress,P, of the cytoskeleton.
Then Pcontrols the transition between solid-like and fluid-like behaviours of the cell.

Biotensegrity has been well adapted to living organism structures in the cell level (Lian et al., 2012).
In cellular tensegrity model tensional force in cytoskeletal microfilaments and intermediate filaments, are
balanced by internal microtubule struts and ECM adhesions in compression. Furthermore, tensegrity
structures have been proposed to explain how various types of cells (e.g. nerve cells, smooth muscles, etc.)
resist shape distortion (Sultan et al., 2002). A more practical engineering research provides understanding of
biotensegrity principle and its potential to robotics.

In the three-dimensional tissue engineering scaffolds that resemble the in-vivo environment of the
ECM, one approach to modelling open-cell foams is to apply structural mechanics to a periodic unit cell or
the cell itself that packs to fill space. A Tetrakaidecahedron unit cell is often used to represent the geometry
of open-cell foams as it packs to fill space and has morphology similar to that of low density foams.

In one of Plateau's most beautiful soap experiments, a wire cube is dipped in soup solution (Figure 2,
left). When lifted out, a film is seen to pass inwards from each of the twelve edges of the cube and these
twelve films meet three by three in eight edges running inwards from the eight corners of the cube
(Thompson, 1942), but the twelve films and their eight edges do not meet in a point. They are grouped
around a small central quadrilateral film. Lord Kelvin made a remarkable conclusion that the square fenestra
with the four quadrilateral films impinging on its sides in Plateau's experiment, represented the one-sixth part
of a symmetrical figure, that this figure when complete was bounded by six squares and eight hexagons that
by means of assemblage of these fourteen-sided figures, or Tetrakaidecahedron, space is filled and
homogeneously partitioned with an economy of surface in relation to volume ((Figure 2, right).

DYNAMIC STABILITY OF THE TETRAKAIDEKAHEDRONTENSEGRITY

TETRAKAIDECAHEDRON TENSEGRITY MODULE FORM FINDING

To seek the statically stable form of a tensegrity module, a rank minimisation technique is utilised in
which the nodal equilibrium is guaranteed and tensegrity assumptions are considered as constraints (Taheri
and Kuang, 2014). This optimisation problem is formulated as follows,

Figure 1: The tension and compression structures in a cell, actin microfilaments are intension and microtubules
are in compression

International Institute of Earthquake Engineering and Seismology (IIEES) 3

SEE 7

borne and generated mainly by the microfilaments, especially in conjunction with myosin and also by
intermediate filaments and by the membrane itself as the surface tension. Compression is bornemainly by
microtubules. Figure 1 depicts a cell with its tensile and compressive elements. Higher order tissue
architecture may be constructed as a result of specific binding affinities between basement membrane (BM),
molecules which are architectural anchoring foundations, and other ECM components that are produced by
neighbouring epithelial and mesenchymal societies.

Cells are known to exhibit time and rate of deformation dependent viscoelastic behaviour. The dynamic
stiffness of the cytoskeleton of adherent cells increase with the frequency (ω) of the imposed deformation, as a
weak power law,(ωα), where αis a variable that takes a value between zero and one (King, 2011). In the limit
ofα 0, the stiffness becomes independent of ω, indicating elastic solid behaviour, whereas in the limit of
α 1, it becomes proportional to ω, indicating viscous Newtonian fluid behaviour. Between these two limits
the system behaves viscoelastic. There is an inverse relationship between αand prestress,P, of the cytoskeleton.
Then Pcontrols the transition between solid-like and fluid-like behaviours of the cell.

Biotensegrity has been well adapted to living organism structures in the cell level (Lian et al., 2012).
In cellular tensegrity model tensional force in cytoskeletal microfilaments and intermediate filaments, are
balanced by internal microtubule struts and ECM adhesions in compression. Furthermore, tensegrity
structures have been proposed to explain how various types of cells (e.g. nerve cells, smooth muscles, etc.)
resist shape distortion (Sultan et al., 2002). A more practical engineering research provides understanding of
biotensegrity principle and its potential to robotics.

In the three-dimensional tissue engineering scaffolds that resemble the in-vivo environment of the
ECM, one approach to modelling open-cell foams is to apply structural mechanics to a periodic unit cell or
the cell itself that packs to fill space. A Tetrakaidecahedron unit cell is often used to represent the geometry
of open-cell foams as it packs to fill space and has morphology similar to that of low density foams.

In one of Plateau's most beautiful soap experiments, a wire cube is dipped in soup solution (Figure 2,
left). When lifted out, a film is seen to pass inwards from each of the twelve edges of the cube and these
twelve films meet three by three in eight edges running inwards from the eight corners of the cube
(Thompson, 1942), but the twelve films and their eight edges do not meet in a point. They are grouped
around a small central quadrilateral film. Lord Kelvin made a remarkable conclusion that the square fenestra
with the four quadrilateral films impinging on its sides in Plateau's experiment, represented the one-sixth part
of a symmetrical figure, that this figure when complete was bounded by six squares and eight hexagons that
by means of assemblage of these fourteen-sided figures, or Tetrakaidecahedron, space is filled and
homogeneously partitioned with an economy of surface in relation to volume ((Figure 2, right).

DYNAMIC STABILITY OF THE TETRAKAIDEKAHEDRONTENSEGRITY

TETRAKAIDECAHEDRON TENSEGRITY MODULE FORM FINDING
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Figure 1: The tension and compression structures in a cell, actin microfilaments are intension and microtubules
are in compression
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Figure 2: (Left) Plateau's soap film experiment with cube and (Right) the tetrakaidecahedron module
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In this formulation, L , is called the Laplacian matrix  which is calculated through some matrix arithmetic operations.

, , , ∑0 (2)

, : , ∑, 0 (3)

, , , 0 , , , 0 (4)

α is defined as the element indicator matrix variable to specify the member type. α 1if the
member is a tension element or a cable and α 1 if the member is compressive or a strut. qf /l is the force density matrix variable which its ij’th entry is defined as the ij’th element force over the
respective element length. In addition, x , y and z are the nodal coordinates vectors and n is the number of
nodes. In this regard, a typical equilibrium equation in x direction for node iis ∑ α q x x f , in
which f is the external force at node i in x direction. The matrix form equilibrium equation for all nodes inx direction can also be expressed as L , x 0. Furthermore, the constraint ∑ α 2 means that only
one strut (compressive element) is allowed at any node i. Minimising the rank of Laplacian matrix results in
in-equilibrium values of the force density and element indicator variable matrices as the problem solution.
Therefore, the solution expresses the tensegrity module connectivity as the indicator matrix and the self-
stress array in the form of the force density matrix.
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DYNAMIC EQUATIONS OF MOTION

The special structure of the nonlinear ordinary differential equations describing the dynamics of
tensegrity structures is determined through the application of Lagrange methodology. The application of the
Lagrangian methodology to derive the nonlinear equations of motion necessitates the derivation of the
kinetic and potential energies and non-conservative generalized forces (Sultan, 1999).
Consider an arbitrary tensegrity structure composed of E tendons and R rigid bodies (struts are considered
rigid). The modelling assumption are: all the joints of the system are affected at most by kinetic friction and
tendons are affected at most by kinetic damping. Let b , b , b be a dextral orthogonal inertial system of
references and g , i 1, … , n be a set of n independent generalised coordinates which describe the motion
of the system with respect to the inertial reference frame. Tendons are massless then only the rigid bodies
contribute to the kinetic energy (Sultan, 1999):

(5)

In which M q is the positive definite mass (inertia) matrix. In addition, inertial energy is only of
elastic deformation (elongation) of tendons.∑ ∑ ∑ (6)

It is assumed that the system is acted upon by non-conservative forces and torques (e.g. friction
torques at the rigid to rigid joints) and external forces and torques acting on the rigid bodes. The non-
conservative generalized forces can be derived from the expression of virtual work:

∑ , 1, … , (7)

In which Q is the non-conservative generalised force associated with the i-th generalized coordinate,F and M are resultant non-conservative force and torque applied to rigid body k, respectively (R is the total
number of rigid bodies). r andω are velocity and angular velocity  of the centre of mass of k-th rigid body
respectively.
The Lagrange equations of motion for a holonomic system with n independent generalized coordinates can
be expressed as:

(8), 1, … , (9), (10), ∑ ∑ (11)

, , 1, … , , 1, … , (12)A q T q is the vector of elastic generalized forces where T ’s are tensions in the tendons.

DYNAMIC STABILITY AND PRODUCT FORCES

Consider a tensegrity structure, which consists of j joints, connected by b elements and by a total of k
kinematic constraints to a rigid foundation. Vector t t of size b is considered to containtime dependent
internal forces in the elements, and vector f t of size 3j k,to contain the external forces with respect to
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time at joints in three dimensional Euclidean space. In this regard, the matrix form equilibrium equation can
be written as follows, . (13)

Inthisequation,E t is the 3j k btime dependent equilibrium matrix.It can beinvestigated that in
general there are four major subspaces associated with E t at each time step when its rank is known. The
first subspace is the range of column spaceof E t which spans the columns of E t and presents the internal
force vector spacewhich can be supported in equilibrium by the tensegrity structure in its present geometry.
In other words, in case we do not have external loads on thesystem, the internal forces associated with this
first subspace will be null. Thedimension of this subspace is equal to rank of E t . The second subspace ofE t is its column null-space which presents the internal forces vector space which areorthogonal to the first
subspace and require no external forces for equilibrium.It means that even without external forces there are
sets of internal non-zeromember forces in equilibrium, which can be named self-stress sets (s). These self-
stress sets are required for the dynamic equilibrium at each time step if there is no external force vector
acting on the tensegrity nodes.
The third subspace of matrix E is its related row space of memberlength change vectors, which require nodal
displacements. Thedimension of this vector space is also rank of E t . Finally, the fourth subspaceof E t is
the null-space of its row space which gives those nodal displacementswhich do not require member
elongations or deformations . Due to no member length changeunder the nodal displacements of this forth
subspace, its dimension is equal tothe number of infinitesimal mechanisms (m) in the tensegrity system.
Consequently, it is possible to present the general stability relationship of atensegrity structure at each time
step as follows, s m b 3j k (14)

It is worth mentioning that for ordinary trusses without self-stress modes, the left hand side of the
above stability equation must be zero for stability. However, excluding the rigid body motions from the rest
ofmechanism vectors, it is possible to check the stability of the tensegritysystem.If the tensegrity system
geometrical arrangement is formed in a way thatthe states of self-stress can stiffen the infinitesimal
mechanism displacements then the system is stable. In case of imparting any vector of infinitesimal
displacements to the system,the pattern of external forces will change and the difference force vector, which
plays the equilibrium, preservation load vector appear to rebound the system. These rebounding forcesare
called product forces.To investigate the product forces expressions, the equilibrium equations at theinitial
state (before imposing the infinitesimal displacements vector), must berewritten considering the vector of
time dependent infinitesimal displacements as u v w in x, y and z directions as follows,∑ x u x u . t f t (15)

∑ y v y v . t f t (16)

∑ z w z w . t f t (17)

Subtracting the equilibrium equations from those in the initial state (or previous time step), the
expressionsfor product forces in time can be revealed as follows,p t f t f t ∑ u u . t (18)

∑ . (19)∑ . (20)
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In general, after computing the initial self-stress values (t ) by the null-space of the equilibrium
matrix, the dynamic stability is investigated at each time step. For this purpose, the product force vector is
calculated at each time step and it is compared with the external dynamic forc vector at the same step. If the
structure can be equilibrated with these two vectors, then it is dynamically stable, otherwise it is either
unstable or some control measures should be applied to guarantee the dynamic stability.

CONCLUSIONS

To promote the efficiency of the engineering structures, structural biomimicry is a promising study. In
this perspective, tensegrity concept as the structural system of the nature and living creatures is investigated
and analysed. Furthermore, the inspired structural system required an optimum space-filling shape to build a
context. This leads to the Tetrakaidecahedrontensegrity module mimicking cells and tissues. To solve the
basic problem of form-finding of this module, in this paper a rank minimisation method is utiliseded to find
the shape and state of self-stress of the under studytensegrity structure.
The dynamic stability formulation is investigated considering the infinitesimal mechanisms and self-stress
modes in the tensegrity structures as well as rebounding product forces, which appear as the resisting forces
against the external dynamic perturbations. An algorithm is proposed as if the compatible self-stress set
imparted to the tensegrity system initially can produce the equilibrium rebounding product forces and
eventually can neutralise the external dynamic forces without letting the structure enter to a finite mechanism
mode or large displacement, the system is dynamically stable. Otherwise some further control measures
should be contemplated to change the self-stress set of the system in accord with the external dynamic forces
and required rebounding product forces.
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should be contemplated to change the self-stress set of the system in accord with the external dynamic forces
and required rebounding product forces.
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