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ABSTRACT 
 

Earthquakes are natural hazards which occur quite often worldwide every year, and the recorded data 

sets can be used to analyse the characteristics of seismic response in a specified region. In this study, a 

genetic algorithm based neural network model is developed to improve the reliability of predicting peak 

ground acceleration, the key element to evaluate earthquake response and to setup seismic design standard. 

Three seismic parameters including local magnitude, epicentre distance, and epicenter depth, are taken in the 

input layer for developing the fundamental estimation model. Then, two geological conditions including 

standard penetration test value and shear wave velocity, are added for developing a new model to reflect the 

site response more adequately. Based on the earthquake records and soil test data from 86 checking stations 

within 24 seismic subdivision zones in Taiwan area, the computational results show that the combination of 

using neural network and genetic algorithm can achieve a better performance than that of using neural 

network model solely. This preferred model can be extended to predict peak ground acceleration at 

unchecked sites, and can be applied to check the design standard in building code. This study may provide a 

new approach to solve this type of earthquake related nonlinear problem.  

 

1. INTRODUCTION 
 

For an event of severe strong ground motion, it may cause a large scale of structural damages and 

result in tremendous casualties and property losses directly and indirectly. Accumulated results have shown 

that earthquakes accounting for nearly 60% of all disaster-related mortality in the past decade (Bartels and 

VanRooyen, 2012). To reduce various negative impacts from this natural disaster, a wide range of relating 

research topics, such as earthquake mechanism and potency investigation, prediction and warning system 

development, instrumental measurement and data analysis, have been extensively reported (Bailey et al., 

2009; Rhoades and Evision, 2004; Zobin et al., 2014) in the field of applied geophysics as well as in the 

community of earthquake engineering. 
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Regarding seismic data analysis, the sources are in general come from checking stations in certain 

regions. Except of earthquake occurring time and location, the historical record data may also include some 

of important seismic parameters such as local magnitude (Mg), epicenter distance (Di), epicenter depth (De), 

and peak ground acceleration (PGA) in vertical (V), north-south (NS), and east-west (EW) directions, 

respectively. These data can be used to describe the characteristics of strong ground motion in a specified 

area, and can be taken as a basis for setting up anti-earthquake design standard in building code. Therefore, 

there also exist many papers to deal with this important practical problem. For instance, the use of 

conventionally statistical method with linear and nonlinear models applied in estimating PGA (Yuen and 

Mu, 2011). The recently developed method of using artificial neural network (NN) to model the above 

mentioned seismic parameters can also be found frequently (García et al., 2007; Kerh et al., 2008). These 

reports did provide useful information for the cases studied and relevant engineering applications. 

In neural network approach, the commonly supervised learning paradigm and the steepest gradient 

descent based search method in neural computing may converge to a local minimum of the error function if 

the initial connection weights are randomly selected. To overcome this problem, the connection weights 

could be selected using genetic algorithm (GA) that increases the probability of finding the global minimum 

of the error function (Vonk et al., 1997). Therefore, this study focuses on developing a genetic algorithm 

based neural network model (NN+GA) to improve the reliability of predicting model.  

The application of using this combination model in predicting PGA is very limited, and the research 

only focused on investigating seismic basic parameters (Kerh et al., 2010). It may still lack some of crucial 

factors such as geological difference to reflect the truly site effect. Therefore, in addition to seismic 

parameters (Mg, Di, De), this study takes two seismic related soil test results, that is, shear wave velocity 

(Vs) and standard penetration test value (SPT-N) to the input layer of the combination model. The new 

prediction model developed in the present study is expected to have a better reliability and represent site 

response more adequately. 

 

2. INFORMATION IN RESEARCH AREA 
 

The island of Taiwan is located within the “ring of fire”, the primary trigger force to create earthquake 

is come from the intrusion of Eurasia sea plate and Philippine sea plate. There are 33 major active faults 

distributed in the whole island (CGS, 2013), so strong ground motions are frequently occurred in this region. 

Figure 1 (left) shows a yearly earthquake records in recent (11/2011-10/2012, Chen and Chang, 2012), it can 

be seen that thousands of strong ground motions occurred in the neighborhood of Taiwan island, where it no 

lacks of destructive earthquakes, where the most significant one is the so-called 921 earthquake (Mg=7.3, 

De=8km) occurred at the central part of Taiwan in 1999, resulted in tremendous casualties and structural 

damages, which equivalent to about 10 billion USD property losses. 
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Figure 1. Distribution of earthquakes (left) and sketch of research area (right). 

 

After several revisions and to respond to the actual seismic conditions, the currently building code in 

Taiwan divided the entire island into two division zones (Zone A and Zone B), and there are 24 subdivision 

zones based on boundary of cities and counties for more precisely. The design earthquake area coefficients 

of horizontal acceleration for Zone A and Zone B, are 0.33g and 0.23g, respectively (CPA, 2006). Note that 

1g = 981gal (cm/s
2
), it can be used for calculating earthquake force in structural design.  

From the sketch of the present study area in Figure 1 (right), it can be seen that the white color region 

represents Zone A, which has a total of 17 subdivision zones (A1-A17). The strip line with green color area 

represents Zone B, which has a total of 7 subdivision zones (B1-B7). Additionally, the 86 white dot signs 

denote checking stations to provide historical seismic records from the year of 1994 to the year of 2013. The 

dark dot signs are the location of unmeasured sites to stand for the 24 subdivision zones, and seismic data 

sets from 2 to 4 checking stations are taken for analysis in these subdivision zones. 

Basically, the geological conditions in the island of Taiwan may consist of six major regions, The soil 

condition in the western side of Taiwan is in general softer than the other regions because of its geologically 

loose structure. Hence, ground motion in this region may be more sensitive to site effects and should be 

considered more carefully in engineering design. The difference of geological conditions may cause to 

generate different degree of amplification effect during an earthquake, and so the acceleration response 

spectrum may vary under different geological environments.  

The site effect is an important factor to revise nonlinear acceleration response spectrum, which is used 

for anti-earthquake design in currently building code of Taiwan (Wun et al., 2004). In general, the averaged 

soil layer at 30m underground of the construction site is used for determining the characteristics of soil 

condition. The definitions of the standard penetration test value (SPT-N) and the shear wave velocity (Vs) 

may be written as: 

                                      
1 1

SPT-N / ( / )
n n

i i ii i
t t N

 
         (1) 
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                                                                    )2) 

 

where ti is the thickness (m) of soil layer; Vsi is the averaged shear wave velocity (m/s) at the i soil layer; and 

Ni denotes standard penetration test value for each soil layer. 

From the principle of soil mechanics and seismic wave theory (Wikipedia, 2014), it is understand that 

the SPT-N value may provide an indication of the relative density of granular deposits, and may be used to 

reflect the resistant of liquefaction due to earthquake. For a seismic body wave, the P-wave (sometimes 

referred to as the pressure wave) propagates very quickly and only lasts for a short time. Thus, it causes 
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relatively insignificant structural damage. Whereas, the S-wave (or secondary wave), propagates more 

slowly than the P-wave, and it may cause greater structural damage. Therefore in this study, both soil  

parameters of SPT-N value and S-wave velocity are considered to represent the site effect during strong 

ground motions. 

 

3. COMBINING NEURAL NETWORK MODEL WITH GENETIC ALGORITHM 
 

In the field of artificial intelligence, artificial neural network has been well developed in recent years. 

There exist several types of neural networks but in general can be categorized into two types: supervised 

learning networks, and unsupervised learning networks (Chang and Chang, 2010). The frequently used back-

propagation neural network is a multi-layered feed-forward network, which uses the supervised learning 

process to treat nonlinear mapping relationship between inputs and outputs. This neural network model has 

various engineering applications due to its simplicity and effectiveness. The detailed principle, operational 

logic routine, and transfer function of this multi-layered neural network can be found in many of the related 

literatures (Shanga, 2005; Mandic and Chambers, 2001). For simplification, the basic equations for the 

neural network model can be written as: 

                                                        ( )j ij i jY F W X                                                           (3) 

 

where jY is the output of neuron j, ijW represents the connection weight from neuron i to neuron j,  iX  is the 

input signal generated for neuron i, j is the bias term associated with neuron j, and ( )F x  is the nonlinear 

activation function. 

The performance of a neural network model can generally be evaluated by using the coefficient of 

correlation (R) and the root mean square error (RMSE), defined as follows, respectively: 
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where ix  and x  are the recorded value and its average value, respectively, iy  and y  are the estimated value 

and its average value, respectively, and m denotes the number of data points in the analysis. In addition, N is 

the number of learning cases, Tn is the target value for case n, and Yn is the output value for case n. 

This study employs the neural network toolbox in MATLAB to perform neural network calculations 

(Wu et al., 2003). The main steps for developing the model are: 1) generating a vector file for the seismic 

records and soil test data (Mg, Di, De, PGA, SPT-N, Vs) in Excel; 2) importing the data set into the neural 

network toolbox; 3) choosing the training function, learning function, performance function, and transfer 

function to create a new network; 4) training the network and adapting the weight and bias values for 

completing the model development; and 5) simulating to estimate PGA in the three directions for each of the 

seismic subdivision zones.  

It is well-known that the typical genetic algorithm requires a genetic representation of the solution 

domain, and a fitness function to evaluate the performance of the solutions in the domain (Wikipedia, 2014). 

This particular class of evolutionary computation does not use the original parameters but applies operators 

to a coded representation of the parameters. The fundamental structure of genetic algorithm including five 

major operators: 1) encoding and decoding, 2) fitness function, 3) selection strategy, 4) crossover, and 5) 

mutation. With these computational operators, the use of genetic algorithm is not only restricted to searching 

the solution space, but also for obtaining the global optimum solution or near global optimum solutions. 

 For more details, the basic procedures for incorporating a genetic algorithm into neural network 

model are: 1) input weight and bias values associated with each layer from the neural network model; 2) use 

binary coding for weight and bias to be represented as a continuous chromosome; 3) develop a fitness 

function by using the root mean square error between estimations and records; 4) set up population 

parameters and evolution parameters; 5) start the search for obtaining a new set of weight and bias; 6) insert 
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the new set values to the neural network model for getting a new estimation; 7) repeat the procedure until it 

converge to get the optimal solution.  

 

In this study, the software package GeneHunter (Ward, 2004) is taken to perform the calculations 

required to obtain the best weight and bias set for the neural network model. At first, the relating parameters 

of neural network model such as inputs, targets, layers, neurons, weight, and bias are generated in Excel 

interface. Then, by loading software tool into Excel and set up various parameters, and start to search the 

best solution finally. With this approach, a more reliable PGA estimation can be expected and this will 

provide an improved basis for analysing the seismic problem studied herein. 

 

4. MODEL PERFORMANCE AND COMPARISON 
 

          In the present neural network model, the hyperbolic-tangent is used as the transfer function, which 

values ranged between -1 to +1. To scale the input parameters and to prevent the effect of extreme values, 

the input data sets need to be normalized by using the following equation: 

                                                                    min

max min

2( )
1old

new

V V
V

V V


 


                                                      (6) 

where Vnew is the value after normalization; Vold is the original data; Vmax and Vmin are the original maximum 

and minimum data, respectively (Yeh, 2004). For the totally random data sets, three parts of data, i.e. 70%, 

20%, and 10%, are used for train, adapt, and simulate, respectively in the neural network model calculation 

stages. Note that there is no particular rule to arrange the data set, the performance of each calculation stage 

can be evaluated from the indices of correlation coefficient and root mean square error as defined previously. 

The use of three seismic parameters (Mg, Di, De) in the input layer of neural network model has been 

proved to have an acceptable performance for PGA predictions. Whereas, the addition of using the two 

geological parameters (SPT-N, Vs) in the neural network model may require a further check to verify the 

sensitivity of these parameters. As shown in Table 1 is the comparison of performance including correlation 

coefficient and root mean square error between NN model and NN+GA model with different input 

parameters. It can be observed that the NN+GA model do perform better than that of NN model. Also, the 

inputs to include both seismic and geological parameters do have a better performance than that of using 

seismic parameter solely. These results prove the use of NN+GA model is more reliable, and the geological 

conditions do have a positive influence on the PGA prediction. Therefore, this preferred model will be used 

for predicting PGA at unmeasured sited to be discussed in the following subsection. 

 
Table 1. Comparison and performance of NN model and NN+GA model. 

Model NN NN+GA 

Input parameter / Performance trained simulate trained simulate 

Seismic 

(Mg, Di, De) 

R2 0.65614 0.46806 0.74626 0.53744 

RMSE 0.26482 0.35815 0.18427 0.18659 

Seismic + Geological 

)sN, V-(Mg, Di, De, SPT 

R2 0.64505 0.47678 0.83365 0.55943 

RMSE 0.29995 0.41748 0.16640 0.20245 

 

For the 24 seismic subdivision zones in Taiwan area, the averaged coordinate of checking stations 

within each of the subdivision zone is taken to represent the estimation location, and the PGA at this 

unmeasured site will be evaluated by using the developed NN+GA model. Initially, both seismic records and 

soil test results for the total 86 checking stations studied herein are trained and developed by NN+GA model 

for each station individually. Then, by taking all estimation results with target values, the relationships are 

shown in Figure 2 for V, NS, EW directions, and for all data sets, respectively. It can be found that the 

correlation coefficient in the range of 0.7≤|R|<1 for all cases, and it can reach up to R
2 
= 0.83708 for all data 
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sets. That is, the estimated PGA has a high relationship with seismic record. Meanwhile, the root mean 

square error is as small as 0.01747, which shows a sufficient accuracy of the prediction results by NN+GA 

model. 
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NN+GA (V) 

RMSE=0.01079 
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NN+GA (ALL) 
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Figure 2. Relationship of PGA estimations with seismic records for all checking stations. 

 

For the unmeasured site in each of the subdivision zones, it requires a model to calculate PGA at this 

site. An easy way to perform the task is by distributing the estimated PGA results from nearby checking 

stations, and summing up with a weighting factor to each checking station. Alternatively, a better way to 

estimate the PGA at an unchecked site as used in this study, is to take a new set of seismic data (same Mg 

and De, but new Di for each of seismic records) and a new set of geological conditions (weight-based soil 

test results of SPT-N and Vs) from known checking stations nearby. Then, insert the data set in a NN+GA 

model developed for each known checking station. By summing the results with weighting factors, the final 

estimation is obtained for the unmeasured site. 

The ability of using NN+GA model to predict PGA is proved for all checking stations, and for the case 

of PGA prediction at an unmeasured site, the result from the weight-based model is comparing with available 

microtremor measurement at a specified location (subdivision B6) as shown in Figure 3. The bar chart 

reveals that the present NN+GA model do perform better than that of using NN model in previous studies 

(Kerh and Chu, 2002; Kerh and Ting, 2005), as the present prediction results exhibit to closer to PGA 

transformed from microtremor measurement. This comparison result may provide the reliability and 

confidence of using NN+GA model for predicting PGA at other unmeasured sites. 
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Figure 3. Comparison of PGA predictions with microtremor measurement (unit: g). 

To check the potential hazardous locations in the research area from the present weight-based NN+GA 

model, the PGA prediction results for the 24 subdivision zones is shown in Figure 4. For the seismic zone A, 

it can be found that there are 6 subdivision zones (A4, A5, A7, A8, A9, and A10) exhibit to have a higher   

horizontal PGA than that of the design value (0.33g). However, this directly predicted result seems too 

conservative, a modified result by using square root of the sum of the square (Hong, 2004), for checking 

stations within each of the subdivision zones, are calculated and included in the plot. It can be seen that there 

are 3 subdivision zones (A7, A8, and A9) exhibit a higher horizontal PGA than the design value, and the 

tendency is also similar to previous research (Kerh et al., 2013) Therefore, this modified result is believed to 

have a more reliability for the case studied herein, and the identified potential hazardous subdivision zones 

should pay more precautious in relevant engineering applications. For the seismic zone B, as the PGAs 

obtained from both NN+GA and NN models are lower than that of the design value (0.23g), so all of 

prediction results comply with design standard in building code. 

 

 

Figure 4. Comparison of PGA prediction result with design standard at 24 subdivision zones. 

 

5. CONCLUSION 
 

The recently developed neural network model can be applied to analyse seismic data sets for 

predicting an important seismic parameter PGA. Whereas, the drawback of this approach may lead converge 

to a local minimum. Therefore, this study attempts to incorporate genetic algorithm, which has a global 

search capability into neural network calculation process, for developing a more reliable prediction model. 

Except of using 3 major seismic parameters (Mg, Di, De) obtained from 86 checking stations in Taiwan 

region, this study also includes 2 seismic related geological conditions (SPT-N, Vs) in the training process to 

represent site response more adequately.  

The comparison results based on the evaluation indices of correlation coefficient and root mean square 

error show that the NN+GA model has a better performance than that of the NN model solely. For the 

unmeasured sites at 24 seismic subdivision zones in the research area, the PGA predictions by a weight-

based model exhibit that there exist 3 potential hazardous zones, as the horizontal PGA exceeds the design 

value as required in the building code. 
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Note that the geological conditions for each of the unmeasured sites are obtained from the nearby soil 

boring test result with a weighting factor, and that may have an influence on the accuracy of prediction 

model. However, this study combining genetic algorithm with neural network, and by inputting both seismic 

parameters and soil test data to develop a prediction model, may provide a new approach to solve this type of 

earthquake related nonlinear problem, and may be applied to other areas of interest around the world. 
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