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ABSTRACT 

While understanding the dynamics of seismic activity is fundamental to the investigation of the 

earthquake process, detailed studies of the earthquake fault system are difficult because the underlying 

dynamics of the system are not observable In addition, the fact that real earthquake fault systems are not 

composed of identical homogenous materials The variety of materials with different physical properties, 

such as frictional strength under pressure, can cause a variety of behaviors Inhomogeneities in the form of 

stress-relieving micro-cracks have been incorporated into long-range OFC models, resulting in a better 

understanding of GR scaling In addition, inhomogeneities have been introduced into fully elastic models 

resulting in either power-law statistics of event sizes or a separate distribution of events combined with large, 

system size events However, to date, none of these approaches have been able to reproduce both the 

temporal clustering and the complete magnitude-frequency distribution scaling regime that are primary 

features of natural seismicity and a critical component in the assessment of earthquake hazard In order to 

study a system with some aspects of spatial heterogeneities, we established a simple, long-range cellular 

automata model for earthquake fault systems based on the OFC model that incorporates a fixed percentage of 

stronger sites, or ‘asperity cells’, into the lattice These asperity sites are significantly stronger than the 

surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress 

The introduction of these spatial heterogeneities results in a rich array of spatial and temporal clustering in 

the model, including large, recurrent events with foreshock and aftershock sequences and accelerating 

seismic moment release and mimics those seen in natural fault systems along with GR scaling 

INTRODUCTION 

Despite the multitude of space-time patterns of activity observed in natural earthquake fault systems, 

the bulk of the research associated with these patterns has focused on a relatively small fraction of the events, 

those associated with either larger magnitudes or persistent, localized signals such as aftershock sequences  
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[Kanamori, 1981; Ogata, 1983; Utsu et al, 1995]  One significant problem associated with studies of the 

earthquake fault network is that the underlying dynamics of the system are not observable [Herz and 

Hopfield, 1995; Rundle et al, 2000] In addition, the fact that nonlinear earthquake dynamics are coupled 

across a broad range of spatial and temporal scales [Kanamori, 1981; Main, 1996; Turcotte, 1997; Rundle et 

al, 1999; Scholz, 2002], combined with the occurrence of rare, extreme events and the associated patterns in 

seismic data [Schorlemmer and Gerstenberger, 2007; Vere-Jones, 1995, 2006; Zechar et al, 2010], means 

that computational simulations are critical to our understanding of the dynamics of the earthquake systems 

[see, eg, Rundle et al, 2003] Simple models of statistical fracture have been widely employed to test many of 

the typical assumptions and effective parameters inherent in the complicated dynamics of the earthquake 

fault system and their relative variability  These models have been employed with remarkable success to 

advance our understanding of the statistical properties of earthquakes [Burridge and Knopoff, 1967; Otsuka, 

1972; Rundle and Jackson, 1977; Rundle, 1988; Carlson and Langer, 1989; Nakanishi, 1990; Rundle and 

Brown, 1991; Olami et al, 1992; Klein et al, 1997; Klein et al, 2000; Alava et al 2006; Mori and Kawamura, 

2008a, b] Burridge and Knopoff [1967] introduced a one-dimensional (1D) system of spring and blocks to 

study the role of friction along a fault in the propagation of an earthquake (Fig1-a) This model has been used 

extensively in the fields of geology, seismology, mechanical and materials engineering, mathematics, and 

physics (Vasconcelos, 1996, 1992; Clancy and Corcoran, 2005, 2006; Carlson and Langer, 1989; Carlson et 

al, 1991; Carlson et al 1994; Langer, 1992) After the initial BK studies, many other researchers investigated 

similar dynamical models of many-body systems with friction, ranging from propagation and rupture in 

earthquakes to the fracture of over layers on a rough substrate (Figure 1-b) Later Rundle and Brown [1991] 

presented a version with frictional sliding using the Mohr-Coulomb friction law that ignored inertial effects  

Olami, Feder and Christensen [1992] generalized Bak, Tang and Wiesenfeld [1987] sand-pile model and 

introduced a lattice version of the continuous, nonconservative cellular automata model (OFC) to investigate 

SOC behaviour in earthquakes  However, most of these models included only short-range stress transfer 

None incorporated spatial heterogeneity into these earthquake-like fault models   

 

          
Figure 1 a) Schematic diagram of the BK numerical model (modified from Burridge and Knopoff, 1967) The geometry 

of a 2D spring block model (modified from Olami et al, 1992) 

Because inhomogeneity plays an important role in the spatial and temporal behaviour of an earthquake 

fault [Serino et al, 2011; Dominguez et al, 2012, 2013], these models recently have been expanded to include 

different types of inhomogeneity, generally by varying individual parameters along the fault plane Several 

studies incorporated inhomogeneity into OFC models, although only for those with short-range or nearest 

neighbor stress transfer [Janosi and Kertesz, 1994; Torvund and Froyland, 1995; Ceva, 1995; Mousseau, 

1996; Ramos et al 2006; Bach et al, 2008; Jagla, 2010] However, stress transfer in natural earthquake faults 

is elastic and, as a result, models with long-range interactions produce more realistic representations [Fisher 

et al, 1997; Ben Zion et al, 2008; Serino et al, 2011]  OFC models with long-range stress transfer produce 

mean-field systems in stable or quasi-stable equilibrium, unlike short-range OFC models, and the existence 

and range of GR scaling is related to those periods of equilibrium [Gulbace et al, 2004; Klein et al, 2000, 

2007; Rundle et al, 1995, 2000; Serino et al, 2011]  In these mean-field systems near spinodal critical points, 

large events drive the system away from the critical point while small events bring it closer, resulting in GR 

scaling over several orders of magnitude 

Serino et al [2011] incorporated damage inhomogeneities into the long-range OFC model in the form 

of stress relieving micro-cracks, resulting in a better understanding of the earthquake frequency-size 

distribution In subsequent work, Dominguez et al, [2012, 2013] incorporated spatial inhomogeneity into the 

lattice by clustering the dead sites in various patterns  They found that the scaling depends not only on the 

amount of damage but also on the spatial distribution of that damage  However, to date, none of the short or 

long-range models have been able to reproduce the variety of temporal clustering that is a primary feature of 

natural seismicity and a critical component in the assessment of earthquake hazard In this work, motivated  
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by the structure of natural faults, we incorporate damage in the form of asperities into a simple cellular 

automata model for earthquake fault systems with long-range stress transfer These asperity sites fail less 

frequently than the regular sites, providing a time-dependent source and sink of stress, storing dissipated 

stress until asperity failure releases it back into the system  The addition of structural asperities leaves the 

GR scaling intact but produces clustering of foreshocks and aftershocks as well as large quasi-periodic 

events 

The model is a cellular automata version of earthquake faults based on the OFC [Olami et al, 1992] 

and RJB [Rundle and Jackson, 1977; Rundle and Brown, 1991] models with some minor variations 

Inhomogeneities are imposed on the model by inserting a percentage of either organized or randomly 

selected locations that accumulate higher levels of stress, similar to asperities on natural faults These sites are 

incorporated by varying the ability of these individual sites to support much higher levels of stress We 

observe a rich array of spatial and temporal clustering for the first time in these models, including large, 

recurrent events, seismic sequences consisting of foreshocks, mainshock and aftershocks, and accelerating 

moment release (AMR)  In addition, we investigate the relationship between the spatial and temporal 

properties of the seismic sequences and the various parameters of the model, such as the overall stress 

dissipation and the percentage of asperities These statistics include the magnitude-frequency distribution 

scaling regime for the largest events, the relative activation of the foreshock and aftershock sequences, AMR 

and Thirumalai-Mountain (TM) metric fluctuations prior to the sequence mainshock and the Omori law for 

foreshocks and aftershocks 

MODEL DYNAMICS 

The model is a two-dimensional cellular automaton model with periodic boundary conditions  In this 

model every site in the lattice is connected to z neighbors, which are defined as sites within a certain distance 

or stress interaction range, R A homogeneous residual stress σr is assigned to all the sites in the lattice To 

impose spatial inhomogeneity on the lattice, two sets of failure thresholds are introduced; ‘regular sites’ with 

a constant failure threshold of σf and ‘asperity sites’ with a much higher failure threshold (σf(asperity)= σf+Δσf)  

These asperity sites incorporate a percentage of stronger sites into the lattice that will support higher stress 

before failure  

Initially, the internal stress variable, σj(t), is randomly distributed on each site in such a way that the 

stress on all sites lies between the residual and failure stress thresholds (σr<σi(t=0)<σf) At t=0 no sites will 

have σi > σf There are several ways to simulate the increase in stress associated with the dynamics of plate 

tectonics Here we use the so-called zero velocity limit [Olami et al, 1992] The entire lattice is searched for 

the site that minimizes (σf - σi) and that amount of stress is added to each site such that the stress on at least 

one site is now equal to its failure threshold That site fails and some fraction of its stress, given by α [σf – 

(σr±η)], is dissipated from the system α is a dissipation parameter (0 < α ≤ 1) which describes the portion of 

stress dissipated from the failed site and η is randomly distributed noise Stress on the failed site is lowered to 

(σr±η) and the remaining stress is distributed to its neighbors  

After the first site failure, all neighbors, including asperity sites, are searched to determine if the stress 

change from the failed site caused any of others to reach their failure stress If so, the described procedure 

repeats for those neighbors and if not, the time step (known as the plate update) increases by unity and the 

lattice is searched again for the next site which minimizes (σf - σi) The size of each event is calculated from 

the total number of failures that expand from the first failed site during that plate update, or time step Unlike 

the original model, stress is dissipated from the system both at the regular lattice sites and through asperity 

sites which are placed inhomogeneously throughout the lattice The asperity sites fail less frequently than the 

regular sites and release much higher stress at the time of their failure resulting in inhomogeneous, time-

dependent stress dissipation in this model 

FREQUENCY DISTRIBUTION OF THE EVENTS 

We compare our inhomogeneous model and a standard homogeneous model with no asperity sites in 

Figure 2 This figure shows time series (6*10
5
 plate updates) and distribution of events (collected during 10

7
 

pu) for three different values of stress dissipation parameters α (Figures 2a, b, and c) The first diagram (i) in 

each set is the time series of events for the heterogeneous model with 1% of asperity sites The time steps in  
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which an asperity site breaks are shown with a grey background shade The second diagram (ii) in each set is 

the time series for the homogeneous model with no asperity sites  Figure 2d is the comparison between the 

frequency distributions for different values of α with and without asperity sites For the 1% asperity model 

the lattice does not break randomly in the time domain, despite the random spatial distribution of asperity 

sites The asperity model produces large, characteristic events that recur at constant intervals Those 

characteristic events occur less frequently as α, or stress dissipation, increases The distributions also confirm 

that, as stress dissipation increases, the largest events become smaller, as higher stress dissipation works to 

suppress large events (Serino et al, 2011)  The frequency distributions also show that the model with 1% of 

asperities generates larger events compared to the homogeneous model 

 

 
Figure 2 Time series of events during a period of 6*10

5
 pu for three different values of stress dissipation parameters (a) 

α = 06, (b) α = 04 and (c) α = 02; (i) are results for the model with 1% asperities (shaded background are those steps in 

which an asperity site breaks); (ii) are results for the homogeneous model  (d) Comparison between the distribution of 

events for two different scenarios (with and without 1% of spatially random distributed asperity sites) for three values 

of stress dissipation parameter 

 

The magnitude-frequency scaling of the long-range OFC model is studied in greater detail in order to 

investigate the effect of spatial inhomogeneities in earthquake fault-like systems with long-range stress 

transfer Serino et al [2011] studied an inhomogeneous version of OFC models with long-range stress transfer 

by adding random damage into the lattice and Dominguez et al, [2013] extended it by imposing various 

spatial configurations of damage into the model They studied various amounts of stress dissipation, α 

(0<α≤1) and showed that both stress dissipation and damage dissipation reduce the length of the scaling 

regime in the resulting magnitude-frequency distributions and reduce the size of the largest events   

Here, we study the magnitude-frequency distribution of events in our inhomogeneous model for 

different percentages of asperity sites by changing the number of stronger sites in the lattice We find that the 

scaling relationship for the heterogeneous systems depends on the total amount of the asperity sites The 

results confirm previous findings that higher values of stress dissipation in the system decrease the length of 

the region in which the event sizes follow a scaling form To better understand this relationship, we extend 

this study by imposing a percentage of randomly distributed asperity sites into the lattice As expected, the 

magnitude-frequency event distribution confirms that as the percentage of asperities increases, the system 

produces significantly larger events (Figure 3a) However, the region in which the event sizes follow a 

scaling form becomes shorter and the relative number of moderate-sized events decreases as the number of 

asperities in the lattice is increased (Figure 3b) By increasing the number of asperities in the lattice, some of 

the moderate events appear to grow into a larger event This migration from the moderate to large sizes is the 

consequence of two effects When an asperity site breaks, a greater amount of stress is released into the 

system and that amount of released stress can cause the failure of more sites, especially in a system with long 

range stress transfer In addition, a greater number of randomly distributed asperity sites in the lattice 

increases the probability of asperity sites triggering each other A system with a higher density of asperities  
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increases the chance that asperity blocks are inside the stress transfer range of a failing asperity That failure 

can result in a cascade behavior and a greater likelihood for a moderate-sized event to grow and become an 

extreme event 

 
Figure 3 a) Magnitude-frequency distribution of events of size “s” for various amounts of randomly distributed asperity 

sites in a system with low stress dissipation, α=02; b) a closer view of the dashed box in a 

ACCELERATED MOMENT RELEASE (AMR) 

Mogi [1981] observed a regional increase in seismicity before great earthquakes, including an increase 

in the overall level of seismicity in the crust surrounding the future rupture zone, in conjunction with 

quiescence, or a relative shortage of events, along or near the fault Ellsworth et al [1981] also observed an 

increase in the rate of M5 events over a broad region in the years preceding the 1906 San Francisco 

earthquake This particular pattern of precursory seismicity appears to accelerate with the approach of the 

mainshock (AMR) [Bowman and King, 2001; Bowman et al, 1998; Sornette and Sammis, 1995; Bufe and 

Varnes, 1993; Sykes and Jaumé, 1990] and is defined by the equation  

                                                
( ) ( t) ,m

ft A B t   
                                                                  (1) 

ε(t) has been interpreted as either the accumulated seismic moment, the energy release or the Benioff strain 

release within a specified region, from some origin time t0, up to time t  

                                                               

( )

1

( ) ,
N t

k

it E 
                                                  (2) 

 

is the number of events in the region between t0 and t,  Ei is the energy release from the i
th
 event, and k=0, 

1/2, 1 A is a constant that depends on the background level of activity, tf is the time of the mainshock, B is 

negative and m is a value between 03 and 07 Ben-Zion and Lyakhovsky [2002] analyzed the deformation 

preceding large earthquakes and obtained a 1-D analytical power-law time-to-failure relation for AMR 

before big events They found that phases of AMR exist when the seismicity occurring immediately before a 

large event has magnitude-frequency statistics over several ranges of magnitude These and similar results of 

Turcotte et al [2003] and Zoller et al [2006] are consistent with observed seismic activation before some 

large earthquakes  

In this section, we investigate the AMR signal in the time series of the events in our model results 

Because the dynamics of our model requires that there is at least one broken site in every time step, we 

binned time into coarse-grained units of Δt=500 pu and counted the number of events greater than a 

predefined threshold in each bin Then we calculate the number of events greater than a chosen threshold in 

each coarse-grained time unit Figure 4 illustrates the cumulative number of events versus coarse-grained 

(binned) time for three different amounts of asperity sites in the models with different stress dissipation The 

increasing number of larger events prior to the mainshock in all the subfigures also produces an increasing 

rate of activity similar to AMR behavior before large events The results suggest that the AMR signal before 

the main event is more evident in those regions with more inhomogeneities and higher stress dissipation This 

is also the first time this phenomenon has been observed in any simple model in conjunction with GR scaling 

These results prompted investigation using the Thirumalai and Mountain (TM) metric [Thirumalai and 

Mountain, 1989; Tiampo et al 2003, 2007, 2010] 
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Figure 4 The accumulated number of events bigger than the defined threshold versus coarse-grained time for a-1% and 

α=020, b-3% and α=020, c-5% and α=020, d-1% and α=060, 3% and α=060 and f-5% and α=060  

of randomly distributed asperity sites for two different stress dissipation parameters  

The grey star on each graph shows the time of the main shock 

TM METRIC BEHAVIOUR 

In this section, we introduce the TM metric as a measure of event clustering The TM metric was 

introduced in the field of statistical physics of fluids to study the time scales necessary to achieve effective 

ergodicity in models of liquids and supercooled liquids [Thirumalai and Mountain, 1989] This method was 

first applied to earthquake simulations [Ferguson et al, 1999] and later was applied to regional seismicity by 

Tiampo et al [2003, 2007, 2010] They identified periods of metastable equilibrium in seismic activity, 

between large events, as well as the relationship between periods of effective ergodicity and certain types of 

seismicity patterns [Tiampo et al 2003, 2007, and 2010] 

The TM metric measures effective ergodicity, or the difference between the time average of an 

observable (eg energy or stress) at each site and the ensemble average of that time average [Thirumalai et al, 

1989; Mountain and Thirumalai, 1992; Thirumalai and Mountain, 1993] A necessary but not sufficient 

condition for ergodicity is stationarity, so that regions of phase space identified as effectively ergodic are 

maintaining stationary statistics over a given period of time In addition, it is a behavior generally limited to 

equilibrium states The TM metric is defined as 

                                                  

 
2

1

1
( ) ( ) ( ) ,

N

x j

j

t f t f t
N 

  
                                                    (3) 

where j refers to lattice sites, N is the total number of sites in the system  

                                                  0

1
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t
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                                 (4) 
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                                                       1

1
(t) (t),

N

j

j

f f
N 

 
                                           (5) 

and x is an observable quantity [Thirumalai and Mountain, 1989] The TM metric is the spatial variance of 

the temporal mean and should disappear by the law of large numbers in ergodic systems The system is 

“effectively ergodic” if 

                                                          t,
t

1
)t(                  (6) 

and the TM metric is used to determine whether or not a system is in statistical equilibrium 

Here, we calculate the TM metric for our inhomogeneous fault model and use it to identify precursors, 

or foreshocks, of the mainshock in the associated time series Figure 5 shows the inverse TM metric plot for 

1%, 3% and 5% percent of randomly distributed asperity sites in the low dissipation model The failure of the 

first asperity site in the series releases a large amount of stress into the system  Because the system has  
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long-range stress interactions and low stress dissipation, the released stress can migrate farther and trigger 

other asperity cells Figure 10 clearly shows the deviation of the linear inverse TM metric in those time steps 

prior to the mainshock (grey star) By increasing the total number of asperity sites from 1% (Figure 5a) to 5% 

(Figure 5c), the probability of triggering and therefore the amount of released stress before the mainshock 

increases and we can see stronger fluctuations in the TM metric plot Also, larger fluctuations in the TM 

metric plot occur prior to larger events in the time series Figure 6 is similar to Figure 5, but for higher stress 

dissipation (α=06) In this case, the probability of asperity triggering is very low and, as a result, the model 

produces smaller events compared to the low dissipation model The TM metric plot also shows smaller 

deviations for higher stress dissipation  

 

Figure 5 Inverse TM metric of each event for a-1%, b-3% and c-5% of randomly distributed asperity sites The grey star on the 

last graph shows the time of the main shock (All the above plots are for a model with α=02- low stress dissipation) 

 

 

Figure 6 Inverse TM metric of each event for a-1%, b-3% and c-5% of randomly distributed asperity sites The grey star on the 

last graph shows the time of the main shock (All the above plots are for a model with α=06- high stress dissipation) 

CONCLUSIONS 

The inhomogeneity of natural materials with different physical properties in the Earth motivated this 

investigation of the effect of spatial inhomogeneity on the macroscopic properties of a many-body system 

The model studied here is a variation of the OFC and RJB cellular automata models of earthquake faults with 

long-range stress transfer In order to reproduce the spatial inhomogeneities of real earthquake faults in the 

model we have converted a percentage of selected locations in our lattice into local stress accumulators 

which have the ability to store and release a higher amount of stress than the surrounding lattice sites, similar 

to asperities on natural faults The initial results illustrate that increasing values of stress dissipation, 

regardless of the presence of inhomogeneity in the system, decrease the length of the scaling regime (Figure 

2) In addition, the increasing number of asperity sites promotes the occurrence of larger events (Figure 3) 

The increasing number of larger events in these recurrent time series follows a pattern of precursory AMR 

activity prior to the mainshock comparable to that observed in natural seismicity (Figure 4) Plots of the 

inverse TM metric also show a clear deviation from stationarity before the mainshock (Figures 5 and 6) 
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This simple model supports the hypothesis that spatial heterogeneity has an impact on the primary 

features of both modeled and natural earthquake sequences and that the spatial and temporal patterns 

observed in natural seismicity may be controlled by the underlying physical properties The model reproduces 

the GR distribution and the size of the largest events and the length of the scaling regime on each fault are 

controlled by the amplitude of the stress dissipation of the system The superposition of many faults, each 

with a different amount of damage, results in GR scaling in the larger fault network  Spatial features affect 

the critical point scaling behavior intrinsic to the earthquake fault process and the associated structure and 

geometry directly impacts the spatial and temporal nature of fault networks  These findings suggest that 

asperities could be responsible for much of the spatial and temporal behavior of real earthquake fault systems 

and support the hypothesis that the patterns observed in natural seismicity may be controlled by the 

underlying physical complexity, rather than simple triggering alone 
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