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ABSTRACT

Probabilistic structural demand models are considered as an essential ingredient for a seismic fragility
analysis. This concept is commonly developed using statistics which needcollecting data in large quantities.
Preparation of such a data-base is often costly and time-consuming. In this paper, generic seismic drift
demand model for regular-multi-story steel moment resisting frames is presented to eliminate the need of
time-consuming analyses. The demand model defined as a linear function of intensity measure,the spectral

acceleration at fundamental period  1( )Sa T , in logarithmic space predicts overall maximum inter-story drift.

In addition,the model is coupled with a set of relations to directly estimate unknown statistical characteristics
of the model parameters. These relations are developed using a Bayesian regression technique to explicitly
address uncertainties arise from randomness and lack of knowledge. The developed demand model is
employed to perform Seismic Fragility Analysis (SFA) for three designed building. The accuracy of the
results is assessed by comparison with the results directly obtained from Incremental Dynamic analysis as an
alternative.

INTRODUCTION

Next-generation Performance Based-Earthquake Engineering (PBEE) proposed by Pacific Earthquake
Engineering Research (PEER) center employs probabilistic framework to serve a mathematical basis for
seismic performance assessment. In this framework, uncertainties embedded in an earthquake occurrence,
nonlinear response of structures and vulnerability of structural components during seismic events are
explicitly addressed. To this end, next-generation PBEE requires probabilistic models for seismic hazard,
structural response, damage and consequence to evaluate seismic performance of a building. Recent studies
have tried to meet this need by developing multifaceted probabilistic models for different part of PBEE. In
the present study the focus in particular is placed on structural demand model. Demand model is commonly
developed for a typical structure based on data obtained from numerous nonlinear response history analyses
(Ramamoorthy et al. (2006), Berahmanand Behnamfar (2009), Garcia and Miranda (2010), Bai et al.
(2011),Tondini and Stojadinovic (2012).). Albeit, this methodology is suitable for academic purpose, but
cannot be appealing for practical purpose because of its computational cost. In this paper, generic
probabilistic demand model is proposed for multi-story steel moment resisting frames (SMRFs) that satisfy
seismic requirements of ASCE-07-10. The model estimates overall maximum inter story-drift and have
linear formulation in logarithmic space respect to earthquake intensity. Also, a set of relations in terms of
building characteristics is developed using Bayesian regression technique to compute unknown models
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Analyses (SFA) are made based on proposed relations for three sample buildings and the results are
compared with those obtained based on seismic demand model specifically developed for each of the three
sample buildings using Incremental Dynamic Analysis.

DATA GENERATION FOR DEVELOPING PROBABILISTIC MODELS

GROUND MOTION RECORDS SELECTION

Developing probabilistic models based on observations obtained from nonlinear dynamic analysis requires
an appropriate selection of ground motion records, called ground motion bin. As a general rule, the ground
motion bin should be unbiased to any site-specific seismological characteristic of a probable future
earthquake event. That is to say that the demand model proposed must keep its generality and versatility. For
instant, the ground motion bin should be broadly applicable to a variety of structures located at different
sites. Also, the number of records in the bin should be enough to cover record-to–record variability in a
justified way. According to the mentioned objectives, the general far-field ground motions set originally
introduced by FEMA-P695 and extended by Prof. C. Haselton1 is used. This set includes 41 pairs of
horizontal ground motions taken from 15 seismic events that occurred in the last three decades of twentieth
century. Of the 15 events, eight were earthquakes that occurred in California and the others occurred in five
different countries. Event magnitudes range from M6.5 to M7.6 with an average magnitude of M7.0.
Moreover, the seismic events are recorded at sites with soil shear wave velocity, in upper 30m of soil, greater

than 180
sec

m
, and located at distance 10 to 70 km from fault rupture. This paper defines source to site

distance as the average of Campbell and Joyner-Boore fault distances provided in the PEER NGA database.
The selected motions were recorded in free-field or on ground floor of a small building to avoid potential soil
structures interaction bias in records set. Also, to avoid potential event-based bias in the ground motion bin,
maximum six records are allowed to be taken from a single seismic event. In addition, between different
ground motions recorded for a single seismic event, only those with Peak Ground Acceleration, PGA ,

greater than 0.2g , and Peak Ground Velocity, PGV , greater than 15
sec

cm
are considered. The limits put on

PGA and PGV are arbitrary, but can be considered as the representative of strong ground motions that
may cause structural damage (FEMA-P695). In addition, twenty five pairs of records are from events of
mainly strike-slip faulting and the others are selected from events of principally thrust faulting.

GENERIC STEEL MOMENT RESISTING FRAMES

The main purpose of the present study is to develop probabilistic drift demand model that is capable to
predict seismic performance of real SMRFs. Therefore, it is important to develop analytical models that the
obtained results can be extended for a wide range of SMRFs with different characteristics. To this end, the
concept of generic moment resisting frame is adopted in this paper. This concept has been widely utilized by
various researchers for assessing seismic behaviour of moment resisting frames (Esteva and Ruiz (1989),
Chintanapakdeeand Chopra (2003), Medina andKrawinkler (2004),). These studies have shown that the
response of a multi-bay steel moment resisting frames can be simulated adequately by a single- bay generic
frame.However, a significant limitation is that the simulation of realistic conditions at an interior joint cannot
be properly considered. Thus, a family of three-bay generic moment frames introduced by Zareian
andKrawinkler (2006 )is used to overcome this deficiency of one bay-generic moment frames. The generic
SMRFs with the number of stories, N ,equal to 4, 6 and 8 are utilized in this paper to cover the range of low-
rise to mid-rise structures. For each number of stories, three fundamental periods equal to N1.0 , N15.0 and

N2.0 are considered to cover the range of variation of the fundamental periods of SMRFs (Goel, Chopra
(1997)). For each period, three different cases for beam stiffness and strength variation are considered. These
three categories are denoted as: “Shear”,” Uniform” and “Intermediate”. Shear implies that moment of
inertia and bending strength of beams at thi story to the moment of inertia and bending strength of the beams
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at first story is equal to the ratio of shear force, obtained from subjecting the generic SMRFs to the ASCE-
07-10 lateral load pattern, at thi story to the shear force at first story. This alternate guarantees a straight line
deformed shape under the ASCE-07-10 lateral load and indicates lower bound for distribution of beam
stiffness and strength over the height.  Uniform indicates that beam moment of inertia and bending strength
is the same along the height of the structure. That is, the ratio of the moment of inertia and bending strength
of beams at each floor to the moment of inertia and bending strength of the beams at first story is equal to 1
and represent upper bound for beam stiffness and strength distribution. Intermediate is also introduced as the
average of the mentioned bounding alternates, i.e. Shear and Uniform to capture behavior of structures that
fall in between two bounds. For simplicity, column moment of inertia in each story is assumed to be equal
the beam moment of inertia. This assumption is supported by the fact that the most of lateral deformation of
SMRFs is due to beam rotation and less due to column deformation, that is, structural deformation is not
sensitive to variation along the height of column moment of inertia. This is quite reasonable and due mainly
to the type of dominated mode of deformation, which is mainly shear-type for a SMRF. Moreover, columns
strength are assigned with respect to strong column–weak beam concept.For each case of stiffness and
strength variation along the height, based on different levels of response modification factor, i.e. R factor,
different occupancy and seismic design categories (ASCE-07-10), three values for yield base shear strength
are defined to sweep variation range of the designed SMRFs lateral yield strength. Lateral yield strength
values are estimated by multiplying design value of the seismic base shear calculated according to ASCE-07-
10by over-strength factor provided in ASCE-07-10. Concentrated plasticity is used to model nonlinear
behavior of SMRFs elements. To this end, elastic beam column element associated with nonlinear rotational
spring at two ends is adopted to model nonlinearity. The Bilin-Materials (Lignos, D.G. and H. Krawinkler
(2011)), Modified Ibarra-Medina-Krawinkler Deterioration Model with Bilinear Hysteretic Response, are
assigned to end springs to demonstrate hysteretic behavior (Fig.1). The hysteretic response of this material
has been calibrated with respect to more than 350 experimental data of steel beam-to-column connections.
The model incorporates three deterioration modes once the yielding point is passed in cyclic loading. These
three modes are: Basic Strength Deterioration, Post capping Strength Deterioration and Unloading stiffness
deterioration. In this model, the rate of cyclic deteriorations for each mode of deteriorations are controlled by
the rule initially developed by Rahnama and Krawinkler (1993) .Also, the model parameters value are
computed based on comprehensive data-base provided by Lignos and Krawinkler (2011) .According to
above criteria , 81 generic steel moment resisting frames are developed .The OpenSees , a software proposed
by PEER as the computational platform for simulating the seismic response of structural and geotechnical
systems, is utilized to perform Incremental Dynamic Analysis (IDA) . Also, global P-Delta effect and
Rayleigh damping equals 5% are considered when IDA is carried out.

INCREMENTAL DYNAMIC ANALYSES (IDA)

Incremental Dynamic Analysis (IDA) is a computer-intensive procedure which depicts the
performance of structures over the full range of structural behavior, from initial elastic response through to
global Instability, under seismic loads (Vamvatsikos and Cornell (2002)). IDA is usually referred as the
dynamic equivalent of the well-known static pushover analysis. It entails performing multiple nonlinear time
history analyses of a structural model under an appropriate number of ground motion records scaled to
several levels of seismic intensity. The scaling levels initiate at an appropriate low value and continuously
increase until global dynamic instability will occur. Seismic demand of interest is monitored during each
nonlinear dynamic analysis and the maximum value of the demand is plotted versus intensity level. In this
paper, the spectral acceleration at the fundamental period of buildings  1TSa which is suitable for low to
mid-rise SMRFs was employed to represent earthquake intensity (Shomeand Cornell (2000)). Also, overall
maximum inter-story drift  max is considered as a demand of interest to evaluate seismic performance of
existing building. The IDA solution algorithm implemented in the present study proceeds until structure
experiences excessive max for a slight increase in earthquake intensity, this means   max1 TSa curve
becomes flat. A comprehensive structural data-base is established due to these extensive nonlinear dynamic
analyses. The data-base is divided into two parts, collapse and non-collapse data. The non-collapse data is
applied to introduce probabilistic maximum inter-story drift model for a wide range of SMRFs in terms of
some building characteristics. Based on FEMA 350, collapse point can be defined as a point proximity at
which the local tangent of IDA curve reaches 20% or max exceeds 10%, each occurs first. Nevertheless, it

seems the first criterion is somewhat conservative in some cases. It is observed that structures represent
acceptable level of lateral resistance after collapse point. Hence, this paper defines collapse limit as a point at
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seems the first criterion is somewhat conservative in some cases. It is observed that structures represent
acceptable level of lateral resistance after collapse point. Hence, this paper defines collapse limit as a point at
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PROBABILISTIC DEMAND MODEL FORMULATION
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Consider  h x as a vector of explanatory functions formulated in terms of independent variables

collected in vector x . y is a response variable predicted by:
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of model error. Traditionally, classical regression is applied to compute point estimation of model parameters

 ,i  . It is clear that point estimation based on information obtained from a finite–size sample population

is incomplete and uncertain. Conversely, Bayesian linear regression can express our uncertainty about

 ,i  by considering model parameters as random variables and determines probability distribution of the

coefficients using the Bayesian updating rule (Box andTiao (2011)):
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 ,iL   indicates the likelihood function representing the objective information on  ,i  gained from a

set of observations,  ,ip   denotes the prior distribution reflecting our knowledge about parameters prior

to obtaining observations and c is a normalizing factor . In the case that lower bound data and/or upper
bound data are not available such as data collected in this study, and the probabilistic model of interest is
formulated as a linear function of i , closed form solution can be found for Eq.(2) (Gardoniet al. (2002) .

Under the normality assumption on  and a non-informative priors, Box and Tiao(2011) show that the

posterior distributions of and 2 , denotes vector of model parameters i , are a multivariate t distribution

and an inverse chi-square distribution respectively.

 
 

 
    2

2

ˆˆ
1

22

1

.
2

1 k

T
T

k
k

Tk

s

HH
HHsk

f













 































 














 2 2 2f s    

      


 ˆˆ,ˆˆ1
,,ˆ 21

HYYYYYsknYHHH
TTT 



(3)

Where H is a n by k dimensional matrix which contains all n observations of explanatory functions.
Also,Y is the n-dimensional vector of response variable observations. Once posterior distribution is known,
mean vector M and covariance matrix  can be computed as following:

DRIFT DEMAND MODEL FORMULATION

Probabilistic models are known as a central theme in probabilistic seismic performance assessment
framework. Models can be developed based on both mechanics and statistics i.e. both theory and
observations. The present study focuses on the use of observations obtained from numerous IDA to develop
models. It should be noted, a model that matches past observations will not necessarily predict future events.
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Therefore, both aleatory and epistemic uncertainties are recognized. To this end, linear model with random
parameters in the logarithmic space have been developed to describe relation between overall maximum
inter-story drift as the structural demand parameters  D and earthquake intensity, the spectral acceleration at

fundamental period   1TSa .The logarithmic transformation is also utilized to approximately satisfy the
normality assumption ( i.e., model error has normal distribution ) and homoscedasticity assumption ( i.e.,
Standard deviation of model error is constant).  Eq. (4) illustrates general form of the probabilistic model
considered in this study:

        11 , TSaLnbaTSaDLn (4)

Where    ,1TSaDLn is a response that the model predicts and equal to natural logarithm of the overall

maximum inter-story drift and  ,,ba is a vector of unknown random model parameters. In practice,
estimate statistical characteristics of the model parameters require gathering large quantity observations that
are often time-consuming and expansive. Therefore, in this paper, a set of relations in terms of building
characteristics are proposed to estimate mean and standard deviation of the  without requiring time-
consuming approach such as IDA. Moreover, a relation is proposed to estimate correlation between a andb
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T is structural fundamental period which is equal to auTC (ASCE-7-10) , N denotes as number of stories

and CY indicates yield base shear coefficient .  Moreover, SSD is a numerical index for stiffness and strength
distribution over the structural height and varies from 1 to 3. Its value takes 1 if the stiffness and strength
distribution in height are proportioned to the story shear force obtained from ASCE-7-10 lateral load pattern.
SSD is 3 for uniform stiffness and strength distribution in height. In general, for a designed steel moment frame,
stiffness and strength variation along height is not governed by any of the above mentioned bounding patterns,
but it falls in between these two bounds. Therefore, in this paper, according to interpolation technique and
averaging over the height, following equation is suggested to calculate SSD value.
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T is structural fundamental period which is equal to auTC (ASCE-7-10) , N denotes as number of stories
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lateral load pattern Also, i and 1 indicate story number. Bayesian regression technique is used to consider
both aleatory and epistemic uncertainties when these equations are developed. Table 1 and 2 represent
posterior mean and standard deviation of the model parameters respectively .Moreover, correlation
coefficients between the parameters are presented in table 3 and 4.  With these equations, demand model can
be directly developed. For this purpose, it is only needed to define demand model in the form of Eq. (4).
Then, Eq. (5) to Eq. (11) are implemented to compute mean and standard deviation of the random model
parameters.

Table 1. Mean of model parameters of Eq. (5) ~Eq. (11)

1 2 3 4 

a -0.150042437 0.001006396 -0.33537478 -4.7955413 0.013381034

a 0.0010861 0.002093713 0.003986602 0.001847132 0.003068312

b 0.830570868 0.174904356 0.00045382 -0.82214535 0.034379871

b -0.00139821 -0.05936269 ----------- ----------- 0.001937183

 0.145450695 -0.124366258 ----------- 0.042774078 0.057791202

 -0.030818133 0.009743194 ----------- ----------- 0.002285736

Table 2. Standard deviation of model parameters of Eq. (5) ~Eq. (11)

1 2 3 4 

a 0.011657642 0.000133095 0.007967072 0.143275706 0.013381034

a 0.000151347 0.000313397 0.000845039 0.000208831 0.000253935

b 0.012724471 0.007825274 9.08426E-05 0.160510466 0.002845298

b 0.000251436 0.008900826 ----------- ----------- 0.000160322

 0.028539505 0.025407578 ----------- 0.005687316 0.004782834

 0.0158503 0.002230867 ----------- ----------- 0.000189169

Table 3. Correlation Matrix

Correlation matrix of a
Correlation matrix of a

Correlation matrix of b

1 2 3 4 1 2 3 4 1 2 3 4

1 1 1 1

2 -0.786 1 -0.530 1 -0.493 1

3 -0.334 -0.048 1 0.4280 -0.847 1 -0.622 -0.251 1

4 -0.809 0.7037 -0.148 1 -0.880 0.3407 -0.382 1 -0.365 -0.433 0.5834 1

Table 4. Correlation Matrix

Correlation matrix of b
Correlation matrix of 

Correlation matrix of 

1 2 1 2 4 1 2

1 1 1 1 1 1

2 -0.48304 1 2 0.235754 1 2 -0.79248 1

4 -0.82941 0.096458 1

VALIDATION

To evaluate efficiency and accuracy of the proposed relations, 4 and 7 story- buildings are designed
with respect to American Institute of Steel Construction (AISC) specifications. The first story is 2.8 meter
high, and the height of the remaining stories is 3.2 meter. The buildings are rectangular in plane with a length
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of 22 meters and a width of 16 meters for seven story buildings. Square plane with a length of 20 meters is
considered for four story building. The bay length is 5 meters for four story building and equal 4 meters for
seven story buildings .Two perimeter steel moment frames in each direction associated with composite steel
deck floor are employed to carry lateral and gravity loads, respectively. The model takes advantage of the
building’s regularity, so a two dimensional analytical model was used to perform IDA in longitudinal
direction. The effect of gravity load system during nonlinear dynamic analysis is also considered by
introducing leaning columns. Rigid zones are used to define the joint regions, and the inelastic behavior is
concentrated at the end of beam and column elements. Table 5 shows beams and columns geometry.

Table 5. Beams and Columns Geometry

STORY
4 Story-Building 7 Story-Building

Beam-Section Column-Section Beam-Section Column-Section
1 IPE 450 TUBE 400x400x12 IPE 550 TUBE 400x400x15
2 IPE 450 TUBE 400x400x12 IPE 550 TUBE 400x400x15
3 IPE 400 TUBE 350x350x12 IPE 550 TUBE 400x400x15
4 IPE 400 TUBE 350x350x12 IPE 500 TUBE 400x400x12
5 ---- --- IPE 500 TUBE 400x400x12
6 ---- ---- IPE 400 TUBE 350x350x12

7 ---- ----- IPE 400 TUBE 350x350x12

SEISMIC FRAGILITY ANALYSIS

Seismic fragility is defined as the conditional probability of attaining or exceeding a specific threshold
value d for spectral acceleration equals x. Generally, fragility is computed by:
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Where  SaDLn | and  SaDLn | are the median and standard deviation of the seismic demand given Sa in the

logarithmic space. indicatescumulative standard normal distribution function. According to Eq.(13),
probabilistic demand model is required to perform fragility analysis . Thus, maximum drift demand model is
developed once based on Non-collapse data obtained from IDA, and once again using proposed relations.
The results are presented in table 6 and table 7.

Table 6. Demand model parameters computed using IDA
Number of

Story
a B 

Mean STDEV Mean STDEV Mean STDEV
4 -3.51814 0.01693 0.85823 0.01379 0.40837 0.01203
7 -3.4983394 0.016029 0.88496 0.0481477 0.42667 0.01135

Table 7. Demand model parameters predicted by Eq. (7) ~Eq. (13)
Number of

Story
a B 

Mean STDEV Mean STDEV Mean STDEV
4 -3.5144 0.1817 1.0711 0.0501 0.4469 0.0708
7 -3.3712 0.1809 1.0164 0.0484 0.4195 0.0701

Seismic fragility analyses are performed for two example buildings using models developed both
based on proposed equations and IDA and the results are presented in the form of fragility curves. Fragility
curves are developed for d equals 03.0,007.0 and 05.0 (Fig.2). According to FEMA 350 limitation on
collapse and immediate occupancy limit-state, it is expected that selected threshold values sweep light to
relative severe damage state and named 1 2,SD SD and 3SD individually. As shown graphically, the

maximum difference observed is about 20%. Generally, the results produced based on the proposed relations
give an appropriate agreement with the results obtained from building-specific demand models. Building-
specific demand models are referred to the models specifically developed for each of 4 and 7-story buildings
using IDA. It should also be noted, the time needed to develop fragility curves based on proposed relations is
in order of few minutes whereas for convenience approach, develop fragility based on incremental dynamic
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E 7analysis, is in order of few days. This time saving features associated with appropriate accuracy make these

relations more efficient and appealing for practical purpose.

SUMMARY AND CONCLUSION

This paper presents generic drift demand model for a wide-range of multi-story steel moment resisting
frames designed based on seismic requirements of ASCE-07-10. The model considersaleatory and epistemic
uncertainties by introducing model coefficients as random variables. A set of relations in terms of building
characteristics are presented to estimate unknown mean and standard deviation of random coefficients. These
equations developed using Bayesian regression technique eliminates need of time-consuming collecting data
procedure. To evaluate validity of the proposed relations, fragility curves are developed for three two
buildings. The results are compared with the results developed due to use of buildings-specific drift demand
model. The results indicate that the proposed relations provide acceptable level of accuracy when
implemented in probabilistic framework to develop fragility curve. Note that this accuracy is achieved with
low computational cost in comparison with the convenient method proceeded based on time-consuming
nonlinear dynamic analysis.  Indeed, the main advantage on the use of proposed relations in particular places
on balance between accuracy and computational cost which is appealing for practical purposes.

Figure 2. Fragility Curve of (a): 4-story- building, (b): Fragility 7-story-building
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