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ABSTRACT

In order to help engineers better understand the behavior of concrete columns and to select an
appropriate model for estimating the column capacity, a column classification method is required in
engineering practice. Moreover, the information of the expected column failure mode (or column response)
is helpful for engineers involved in the seismic assessment and retrofit of reinforced concrete buildings. This
paper provides an approach to construct a probabilistic failure mode for concrete columns. The onset of
column failure is defined as 20% loss in the lateral strength and three column failure modes (flexure failure,
shear failure and flexure-shear failure) are considered. The database that consists of tests of reinforced
concrete columns are divided into three categories in terms of span to depth ratio.The methodology
developed by Gardoni et al. (2002) is adopted to construct the probabilistic capacity models for reinforced
concrete columns.

INTRODUCTION

In current structural engineering practice, most drift capacity models are deterministicand do not
explicitly account for all the prevailing uncertainties. For example, Elwoodand Moehle (2005) proposed a
deterministic drift capacity model at shear failure basedon a database of 50 laboratory tests on reinforced
concrete columns. This model onlyprovides a point prediction of the drift at shear failure and ignores the
variability in thetest results. Approximately fifty percent of the columns included in the database experienced
shear failure at drifts less than those estimated by the model. The deterministic model coefficients cannot
reflect the epistemic uncertainties in the model(e.g., finite number of observations). In addition, the model
error due to the model imperfection is not represented. Hence, it is needed to develop a probabilistic drift
capacity model that defines not only a point prediction but also the variance of the model prediction.The
main objective for this study is to help engineers better understand the behavior ofreinforced concrete
columns through an appropriate column classification approach.

CAPACITYMODEL FORMULATION

In this study, the methodology developed by Gardoni et al. (2002) is adopted to constructthe
probabilistic capacity models for reinforced concrete columns. This methodology iscapable of incorporating
a wide range of information, including existing deterministicmodels, laboratory test data, field observations,
and engineering judgment.According to this methodology, a probabilistic capacity model can bewritten in
the following form(Gardoniet al., 2002):
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where denotes the selected deterministic capacity model; x denotes a set of basiccapacity and

demand variables (e.g., material properties, member dimensions, appliedloads); , , …
represents a set of k unknown model coefficients; , denotes the model correction term; is a normal
random variable with zero mean andunit variance; and represents the standard deviation of the model error.
The function , can take various forms, for example,∑ ,where is a set of suitable
explanatory functions that may influence the capacity ofthe structural component (e.g., axial load ratio, shear
span to depth ratio, spacing ofhoops).
The probabilistic capacity model accounts for both aleatory and epistemicuncertainties. Referring toEquation
(1),aleatory uncertainties are present in the variables x, while epistemic uncertainties arepresent in the model
coefficients . The error term . contains both aleatory andepistemic uncertainties.

BAYESIAN UPDATING APPROACH

The model coefficients ( , ) in Equation (1) are estimated by using the Bayesianupdating rule(Box et
al., 1992): , , , (2)

where , denotes the posterior distribution representing our updated knowledgeabout , ;, denotes the likelihood function representing the objectiveinformation on , gained from a set of
observations; , denotes the priordistribution reflecting our knowledge about , prior to obtaining

the observations;and , , is a normalizing factor.
The prior distribution may incorporate any information about , that is based on the previous experience
or engineering judgment. , represents the likelihood of observing the experimental outcome for given
values of the coefficients and . The formulation of the likelihood function depends on the type and form
of the available data. Theoretically, the posterior distribution , can be determined based on Equation
(2) when the prior distribution and likelihood function have been formulated(Box et al., 1992).

The close form solution is valid for the case that the probabilistic model formulation isa linear function
respect to , and all observations are classified as failure data.Assuming , ∑ and n set
experimental observations available, Equation (2) can be rewritten as:

.....
…..…..…

....
.. . .....

(3)

where represents the difference between the ith observed capacity and theestimated
capacity of deterministic model at ; is the value of the kth explanatoryfunction at the ith
observation.Equation (3) can also be expressed in the vector form(Gardoni, 2002): 4

Under the normality assumption on and a non-informative prior with , Box andTiao show that the
marginal posterior distribution of is a multivariate tdistribution.the mean vector of , , and the
covariance matrix of , ∑. are(Gardoni, 2002):

. 2 (5)
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Once the initial probabilistic model has been formed, a stepwise deletion procedure isused to reduce
the number of terms in , to achieve a compromise between themodel simplicity (few correction terms)
and the model accuracy (small ). It is preferredto start the model assessment process with a comprehensive
form of , , and thensimplify the model by removing less important terms or combining terms that are
closelycorrelated.

COLUMN CLASSIFICATIONAND DEFINITION OF FAILURE MODE

This study provides a probabilistic failure modeindex model which distinguishes failure modes for a
given column.the onset of column failure is defined as 20% loss in the lateral strength,and three column
failure modes (i.e., flexure failure, shear failure and flexure-shearfailure) are considered. The definitions of
these three failure modes are schematicallyillustrated in Figure 1.

Figure1. Conceptual definition of column failure modes(Sezenet al.,2004)

Experimental Database

A database containing results of cyclic lateral-load tests ofreinforced concrete columns was compiled
by researchers at the University ofWashington under the support of the Pacific Earthquake Engineering
Research Center.The database consists of tests of 125 reinforced concrete columns.The dataaredivided into
three categoriesin termsofspan to depth ratio.The key parameters of column failure are listed in table 1(Zhu,
1993).

Table1.Key parameters of column failure
1 2 3 4 5 6 7 8 9" "

"
where ais the shear span; d is the depth to the centerline of the outermost tensionreinforcement; s is the

hoop spacing; ⁄ denotes the longitudinal reinforcementratio; denotes the total area of
longitudinal reinforcement; b is the width of columnsection; h is the depth of column section; "
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⁄ denotes the transversereinforcement ratio; denotes the area of transverse reinforcement;⁄ denotes the maximum nominal shear stress; p is the axial load; and bh denotes thegross cross-

sectional area of the column(Zhu, 1993).
Thefailure mode for each column in the selected database is based on the failure modesidentified by

Camarillo.the relation between plastic shear demand and shear strengthprovides useful information in the
determination of column failure modes. Here, thecolumn plastic shear demand is determined by its
maximum moment capacity divided bythe shear span. The maximum moment capacity is computedthrough a
moment-curvature analysis for the column's cross section using Manderconcrete constitutive model and
Burns-Seiss steel constitutive model.The abbreviations of failure modes, 'F' , 'FS'and 'S' , denote flexure
failure, flexure-shear failure and shear failure, respectively.Three integers, '1', '2' and '3', are assigned as
failure mode indices (FM) to represent flexure failure, flexure-shear failure and shear failure,
respectively(Zhu, 1993).

In order to investigate the dependence of the column failure modes on key parameters, nine parameters
in Table 1 are interpreted as explanatory functions, , in the initial formulation of probabilistic failure
mode index model. Note that some selected powers are applied to the column parameters to obtain better
model prediction consistent with the experimental observation.The stepwise deletion procedure is used to
reduce the number ofterms to achieve a compromise between the model simplicityand the model accuracy.
the final model takes theform:

" (7)

Valuesof key parametersforthethree groups of dataare shownin Figures2 to4.

Figure 2. key Parameters of Column Failure (1 2.5

Figure 3. key Parameters of Column Failure (2.5 4
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Tables 2to4 list the posterior statistics of the model coefficients in Equation 7. Thisprobabilistic model

identifies the most important parameters affecting the column failuremode, namely, transverse reinforcement
ratio, aspect ratio, and shear demand-strengthratio. Note that the parameters, which have no clear
relationship with column failuremodesare all eliminated through the modelassessment. Equation 7 is actually
a probability density function of the failure modeindex; hence it can be used to assess the probability of each
failure mode for a givencolumn through a reliability analysis.

Table 2. posterior statistics of the model coefficients  (1 2.5
Coefficients

Mean -0.027 0.223 2.667 -0.422
Standard Deviation 0.954 0.402 1.185 0.95

Table 3. posterior statistics of the model coefficients  (2.5 4
Coefficients

Mean 0.159 0.132 -10.62 1.051

Standard Deviation 0.519 0.117 2.852 0.27

Table 4. posterior statistics of the model coefficients (4 7
Coefficients

Mean 1.6 -0.345 -7.027 0.635

Standard Deviation 0.89 0.313 8.23 0.85

Correlation Coefficient
1 -0.957 -0.649 0.823

-0.957 1 0.517 -0.887
-0.649 0.517 1 -0.707
0.823 -0.887 -0.707 1
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Standard Deviation 0.519 0.117 2.852 0.27

Table 4. posterior statistics of the model coefficients (4 7
Coefficients

Mean 1.6 -0.345 -7.027 0.635

Standard Deviation 0.89 0.313 8.23 0.85

Correlation Coefficient
1 -0.957 -0.649 0.823

-0.957 1 0.517 -0.887
-0.649 0.517 1 -0.707
0.823 -0.887 -0.707 1

20 40

Number of Data

Vp/V0

Correlation Coefficient

1 -0.813 -0.273 0.504
-0.813 1 0.092 -0.877
-0.273 0.092 1 -0.227
0.504 -0.877 -0.227 1

Correlation Coefficient
1 -0.783 -0.738 0.185

-0.783 1 0.393 -0.621
-0.738 0.393 1 -0.246
0.185 -0.621 -0.246 1
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groups of data are:

0.027 0.223 " 2.667 0.422 1 2.5 (8)

0.159 0.132 " 10.62 1.051 2.5 4 (9)

1.6 0.345 " 7.027 0.635 4 7 (10)

CONCLUSIONS

In this study, the methodology developed by Gardoni et al. (2002) is adopted to constructthe
probabilistic capacity models for reinforced concrete columns. With a probabilistic capacity model, it is
possible todetermine the probability of column failureby determining the area underthe probability density
function. This methodology iscapable of incorporating a wide range of information, including existing
deterministicmodels, laboratory test data, field observations, and engineering judgment.The database that
consists of tests of spiral and rectangular reinforced concrete columns are divided into three categories in
terms of span to depth ratio. The Bayesianupdating approach is used to assess the unknown model
coefficients based on thecollected experimental database.

REFERENCES

Box GEP and Tiao GC (1992)Bayesian Inference in Statistical Analysis , Addison-Wesley, Reading, MA

Gardoni P (2002)Probabilistic Models and Fragility Estimates for Bridge Components and Systems, Ph.D.Dissertation,
Department of Civil and Environmental Engineering, University of California, Berkeley

Gardoni P, Der Kiureghian A and Mosalam KM (2002)Probabilistic Capacity Models and Fragility Estimates for
Reinforced Concrete Columns based on Experimental Observations, Journal of Engineering Mechanics, Vol. 128, No.
10, pp. 1024-1038

Sezen H and Moehle JP (2004) Shear Strength Model for Lightly Reinforced Concrete Columns, Journal of Structural
Engineering, Vol. 130, No. 11, pp. 1692-1703

Zhu L(1993)Probabilistic Drift Capacity Models for Reinforced Concrete Columns, ph.D. thesis, Tongji
University,china

6 International Institute of Earthquake Engineering and Seismology (IIEES)

SEE 7

E 7
For the probabilistic failure mode index model in Equation (7), the mean predictionof  FM for 3

groups of data are:

0.027 0.223 " 2.667 0.422 1 2.5 (8)

0.159 0.132 " 10.62 1.051 2.5 4 (9)

1.6 0.345 " 7.027 0.635 4 7 (10)

CONCLUSIONS

In this study, the methodology developed by Gardoni et al. (2002) is adopted to constructthe
probabilistic capacity models for reinforced concrete columns. With a probabilistic capacity model, it is
possible todetermine the probability of column failureby determining the area underthe probability density
function. This methodology iscapable of incorporating a wide range of information, including existing
deterministicmodels, laboratory test data, field observations, and engineering judgment.The database that
consists of tests of spiral and rectangular reinforced concrete columns are divided into three categories in
terms of span to depth ratio. The Bayesianupdating approach is used to assess the unknown model
coefficients based on thecollected experimental database.

REFERENCES

Box GEP and Tiao GC (1992)Bayesian Inference in Statistical Analysis , Addison-Wesley, Reading, MA

Gardoni P (2002)Probabilistic Models and Fragility Estimates for Bridge Components and Systems, Ph.D.Dissertation,
Department of Civil and Environmental Engineering, University of California, Berkeley

Gardoni P, Der Kiureghian A and Mosalam KM (2002)Probabilistic Capacity Models and Fragility Estimates for
Reinforced Concrete Columns based on Experimental Observations, Journal of Engineering Mechanics, Vol. 128, No.
10, pp. 1024-1038

Sezen H and Moehle JP (2004) Shear Strength Model for Lightly Reinforced Concrete Columns, Journal of Structural
Engineering, Vol. 130, No. 11, pp. 1692-1703

Zhu L(1993)Probabilistic Drift Capacity Models for Reinforced Concrete Columns, ph.D. thesis, Tongji
University,china

6 International Institute of Earthquake Engineering and Seismology (IIEES)

SEE 7

E 7
For the probabilistic failure mode index model in Equation (7), the mean predictionof  FM for 3

groups of data are:

0.027 0.223 " 2.667 0.422 1 2.5 (8)

0.159 0.132 " 10.62 1.051 2.5 4 (9)

1.6 0.345 " 7.027 0.635 4 7 (10)

CONCLUSIONS

In this study, the methodology developed by Gardoni et al. (2002) is adopted to constructthe
probabilistic capacity models for reinforced concrete columns. With a probabilistic capacity model, it is
possible todetermine the probability of column failureby determining the area underthe probability density
function. This methodology iscapable of incorporating a wide range of information, including existing
deterministicmodels, laboratory test data, field observations, and engineering judgment.The database that
consists of tests of spiral and rectangular reinforced concrete columns are divided into three categories in
terms of span to depth ratio. The Bayesianupdating approach is used to assess the unknown model
coefficients based on thecollected experimental database.

REFERENCES

Box GEP and Tiao GC (1992)Bayesian Inference in Statistical Analysis , Addison-Wesley, Reading, MA

Gardoni P (2002)Probabilistic Models and Fragility Estimates for Bridge Components and Systems, Ph.D.Dissertation,
Department of Civil and Environmental Engineering, University of California, Berkeley

Gardoni P, Der Kiureghian A and Mosalam KM (2002)Probabilistic Capacity Models and Fragility Estimates for
Reinforced Concrete Columns based on Experimental Observations, Journal of Engineering Mechanics, Vol. 128, No.
10, pp. 1024-1038

Sezen H and Moehle JP (2004) Shear Strength Model for Lightly Reinforced Concrete Columns, Journal of Structural
Engineering, Vol. 130, No. 11, pp. 1692-1703

Zhu L(1993)Probabilistic Drift Capacity Models for Reinforced Concrete Columns, ph.D. thesis, Tongji
University,china


