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ABSTRACT

Using of composite materials in the structures has increased dramatically in the past two decades, due
to the unique advantages of these materials such as high strength to weight ratio and selection of required
material properties in desired directions. The composite materials commonly arecomposed
frommultiplelaminates. Preciseknowledgeabout natural frequencies of the laminates is of particular
importance for investigating their behavior. Classic theory is often used for analysing composite laminates
whih does not onsider shear deformation. In this paper, several plates are modelled in ANSYS program and
then frequency and mode shapes are calculated and compared with the exact solution in literature. After
model validation, the laminates with different boundary conditions and different thickness are analyzed in
ANSYS software and the result of Mindlin theory and classical theory are compared. The results show that
for thickness to width ratioless than0.005, the fundamental frequency in Mindlin theory and classical theory
are approximately the same.

INTRODUCTION

The using of composite materials in the structures is growing rapidly, primarily because of the very
high strength to weight ratio, and secondly strength of composite materials can beincreased in the arbitrary
direction and also other parameters such as thermal expansion coefficient, electrical resistivity, etc. can be
changed according to need. Composite materials are composed from two main parts, reinforced phase and
the matrix phase. Matrix phase is usually ceramics, metals or polymers, that protect reinforce phase.
Reinforced phases are constructed usually from fibers, flaks, or particles as shown in Figure 1. When
reinforced phase of composite materials are particle or flakes, they are analyzed as an isotropic material such
as concrete, because their directivityis random. Wheredirections of fibers are deterministic, the composite
materials that are reinforced with fibers have orthotropic properties.
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Figure 1. Different Types of Reinforced Phase in Composite Material

According to Figure 2, composite plates with fiber reinforced are usually composed form aligned fiber
layers that each of them can vary in direction. Figure 2 presents a composite laminate that the angle of the
layers are 90 and 0 and 90 that is usually written as [90/0/90]. In acomposite laminate, axis 1 representsthe
fiber direction, axis 2 is perpendicular to the fiber direction, and axis 3 is perpendicular to the laminate
surface.

Figure 2. Sample of Composite Laminate

For the purpose of structural design with laminates, understanding the dynamic characteristics of
composite materials such as natural frequencies and mode shapes has a significant importance. For free
vibration analysis, accurate and reliable methods for one-dimensional elements such as beams have been
expanded, but no developments have been made forplate elements. This may probably be due to increased
difficulty in formulating the stiffness matrix for a two dimensional plate element unlike the relatively simple
case for one-dimensional beam element. The Dynamic Stiffness Method (DSM) is proposed by Banerjee can
be applicable for free vibration analysis of plates using both the classical theory and the Mindlin theory
(Shear deformations are not considered, in the classical theory, but are considered in the theory of Mindlin).
The DSM can be very effectively used to study the free vibration behavior of complex structures because
once the Dynamic Stiffness (DS) matrix of a structural element has been developed, it can be rotated, offset
and assembled in a similar way to that of the FEM, to build the global dynamic stiffness matrix. Any number
of exact natural frequencies and mode shapes of a complex structure can be computed without unnecessarily
compromising the accuracy. Because of exact solution of DSM, this method, according to Mindlin theory,
has been developed for composite laminate by Boscole and Banerjee in 2012. They used DYSAP program
for forming Dynamic Stiffness matrix and free vibration analysis. The main purpose of this study is to obtain
the natural frequencies of different laminatesconsidering shear deformation and classical methods. For this
reason first some laminatesthat are analyzed by Boscole and Banerjee are modeled and validated in the
ANSYS program and then the laminates with different boundary conditions and different thickness are
analyzed in ANSYS software and the result of Mindlin theory and classical theory are compared.
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FREE VIBRATION IN BENDING OF LAMINATE

The out of plane (or bending) free vibration analysis of a composite square plate is first carried out to
validate the ANSYS model. The relative material properties, plate dimensions, and laminate lay-up are as
following:

E1/E2= 40 , h/a = 0.1 , a = b =1m, G12= G13= 0.6E2, G23=0.5E2, ν12= 0.25, k = 5/6 E1=110Gpa
lay-up = [0/90/0]

The first 6 natural frequencies of the plate are shown in Table 1 to 3 for different boundary conditions
(S simply supported, C clamped, F free). The dimensionless natural frequency parameters

)//*( 2
2 Eha   make frequency independent from weight and dimension. The results of ANSYS model

arecompared with exact solution of literature, the DYSAP, and CQUAD4 NASTRAN. Table 1 shows the
results of this laminate with four simply supported edges, table 2 for twosimply support edges and two free
edges, and  the results of same laminate with two simply supported edges, one free edge , and one clamped
edge are presented in  table 3. It can be seen that there is total agreement between the solution obtained using
ANSYS program with DYSAP, and the exact results reported in the literature in which only the first three
natural frequencies are quoted. It can also be observed in Table 1 that ANSYS consistently produces
conservative estimate of the natural frequencies with errors ranging from -0.0% to -4.3% on the first 6
natural frequencies. Understandably, the error would increase for higher natural frequencies.

Table 1.Natural Frequencies of Laminate with Four Simply Supported Edges (SSSS)

Mode
ω*

Exact DYSAP
NASTRAN (error

%)
ANSYS (error %)

1 14.766 14.766 14.716 (-0.3) 14.766 (0.00)
2 22.158 22.158 21.718 (-2.0) 21.717 (-1.98)
3 36.900 36.9 34.945 (-5.3) 35.306 (-4.319)
4 --- 37.38 37.072 (-0.8) 37.527 (0.394)
5 ---- 41.158 40.728 (-1.0) 40.936 (-0.538)
6 ---- 50.896 49.268 (-3.2) 49.626 (-2.495)

Table 2. Natural Frequencies of Laminate with TwoSimply Supported Edges and two Free Edges (SFSF)

Mode
ω*

Exact DYSAP NASTRAN(error%) ANSYS(error %)
1 4.343 4.343 4.302 (-0.9) 4.349 (0.131)

2 --- 6.262 6.201 (-1.0) 6.049 (-3.408)

3 16.212 16.212 15.675 (-3.3) 15.868 (-2.124)

4 --- 18.175 17.619 (-3.1) 17.541 (-3.488)

5 ---- 30.34 30.307 (-0.1) 29.767 (-1.888)

6 33.186 33.186 31.121 (-6.2) 32.187 (-3.012)

Table 3. Natural Frequencies of Laminate with Two Simply Supported Edges, One Free Edge,
and One Clamped Edge (SFSC)

Mode
ω*

Exact DYSAP NASTRAN(error%) ANSYS(error %)
1 7.331 7.331 7.296 (-0.5) 7.320 (-0.155)

2 17.558 17.557 17.045 (-2.9) 17.172 (-2.191)

3 --- 23.172 23.066 (-0.5) 23.204 (0.136)

4 --- 28.961 28.566 (-1.4) 28.590 (-1.282)

5 34.019 34.019 31.981 (-6.0) 32.505 (-4.45)

6 --- 41.721 39.918 (-4.3) 40.200 (-3.647)

Some mode shapes extracted from ANSYS software, are given in Figure 3.
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Figure 3. Out of Plain Mode Shapes in Composite Laminate

IN-PLAIN FREE VIBRATION OF LAMINATE

Although in-plane free vibration for isotropic plates has been studied in some papers, apparently not
much attention has been paid to in-plane or membrane mode vibration of plates in the literature as opposed
to bending vibration. In this section the first five in-plane natural frequencies of a square plate are obtain for
different boundary conditions. The material properties and dimensions of the laminate are:

E1/E2= 40 , h/a = 0.1 , a = b =1m, G12= G13= 0.6E2, G23=0.5E2,  ν12= 0.25, k = 5/6 E1=110Gpa
lay-up = [0/90/0]

It should be noted that with regard to in-plane boundary condition, a distinction between two simply
supported (S) cases should be made, namely S1 and S2. The difference between these boundary conditions
has been explained as:

S1(for y =0 and y = L =>u = 0; and v≠0 for x = 0 and x = b => v = 0 and u ≠ 0)
S2(for y =0 and y = L =>u ≠ 0; and v=0 for x = 0 and x = b => v ≠ 0 and u = 0)

In Table 4 the results of the first five natural frequencies are reported for a plate where at least two
opposite sidesare S1. It should also be noted that the FE results obtained by using membrane elements in
ANSYS are accurate with an error of about 2%. Next, in Table 5 the results of the first five natural
frequencies are reported for a plate withat least two opposite S2sides. Also in this case, ANSYS results are
accurate with an error less than 2%.

Table 4.In-Plain Natural Frequencies of Laminate with Support (S1)
Mode ω*

DYSAP NASTRAN (error %) ANSYS (error %)
1 24.3 24.3 (0.0) 24.641 (1.405)
2 24.3 24.3 (0.0) 24.641 (1.405)
3 48.7 48.6 (-0.1) 49.436 (1.512)
4 48.7 48.6 (-0.1) 49.436 (1.512)
5 73 72.9 (-0.1) 74.535 (2.102)
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1 24.3 24.3 (0.0) 24.641 (1.405)
2 24.3 24.3 (0.0) 24.641 (1.405)
3 48.7 48.6 (-0.1) 49.436 (1.512)
4 48.7 48.6 (-0.1) 49.436 (1.512)
5 73 72.9 (-0.1) 74.535 (2.102)
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Table 5.In-Plain Natural Frequencies of Laminate with Support (S2)

Mode ω*

DYSAP NASTRAN (error %) ANSYS (error %)
1 117.6 117.6 (0.0) 119.122 (1.294)
2 119.9 117.6 (0.0) 121.410 (1.260)
3 127.2 127.0 (-0.1) 128.834 (1.284)
4 138.3 138.0 (-0.3) 140.376 (1.501)
5 152.6 151.9 (-0.4) 155.436 (1.859)

Also some in-plain mode shapes extracted from ANSYS software are given in Figure 4.

Figure 4. In- Plain Mode Shapes in Composite Laminate

FREE VIBRATION OF A LAMINATE WITH DIFFERENT THICKNESSES

According to the previous sections the ANSYS have good agreement with exact solution, therefore, in
this section to study difference between Mindlin theory and the classical theory, the values of the natural
frequencies of ANSYS software is used for laminatewith material properties and dimensions of:

E1/E2= 10 , a = b =1m, G12= G13= 0.6E2, G23=0.5E2,  ν12= 0.25, k = 5/6 E1=110Gpa, lay-up = [0/90/90/0]

Table 6 represented the results of the fundamental frequencies that are independent of weight and
dimensions, of the laminate with different ratiosof thickness to width with S2support type.

Table 6.Foundamental Frequencies of Laminate with Different Thickness
ω*

(h/a) classical theory Mindlin theory
0.5 15.830 5.492
0.25 17.907 9.115
0.2 18.215 10.820
0.1 18.652 15.156
0.05 18.767 17.583
0.01 18.804 18.547

0.005 18.809 18.792
0.001 18.810 18.805
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Table7.Fundamental Frequencies of Laminate with Different Thickness)

ω*

(h/a) classical theory Mindlin theory

0.5 15.830 5.492

0.25 17.907 9.115

0.2 18.215 10.820

0.1 18.652 15.156

0.05 18.767 17.583

0.01 18.804 18.547

0.005 18.809 18.792

0.001 18.810 18.805

According to the Table 6 it can be seen that the effect of shear deformation on the natural frequencies
is considerablespeciallyfor larger thickness ratios, namely for the ratio of the thickness to width equal to 0.5,
fundamental frequency is 3times larger for classical theory.Also the fundamental frequency variations in the
classical theory of plates are very small whereasin theMindlintheory these changes are very large. In Figure
1, the fundamental frequency of laminate is plotted against the thickness changes to better illustrate the
results.

Figure5.Fundamental Frequency of Composite Laminate with Different Thickness Ratio

CONCLUSION

Based on this Study, it is observed that inthick laminates; the shear deformation is considered
effectiveon the fundamental frequency and resultsinfrequenciesless than classical theory. By reducing the
ratio of thickness the effect of the shear deformation on the frequency is reduced.When the ratio of thickness
of laminate is less than 0.005, the results of Mindlin theory and the classical theory will be approximately the
same.  Also the changes of the fundamental frequencies in the classical theory are very small but these
changes in the Mindlin theory are considerable.
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