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ABSTRACT

Structures undergo different types of loading during their lifetime. As these loads cause the performance of
the structures to decay gradually, the urge of damage detection using nondestructive methods has been felt during the
past two decades. In this study, a structural damage detection method is presented using measured power spectral
density data. It uses the power spectral density function and the decomposed form of frequency response function to
evaluate response sensitivity with respect to the change of stiffness parameters for finite element model updating.
Damage is considered to be a reduction in structural stiffness parameters. For frequency domains introduced here,
updated stiffness parameters are captured with high accuracy through solving the sensitivity equations by the least
square approach. MATLAB software is used for the numerical analyses. The performance of this method is
investigated through identifying the damage of a bridge truss structure considering different damage scenarios.

INTRODUCTION

Life and money losses due to an abrupt structural failure and also getting the best performance of a
structure during its life time are important motivations for civil, mechanical and aerospace engineers to seek
approaches for detecting the location of damaged parts of a structure as well as their damage intensity. Alongside
non-destructive experimental methods such as acoustic or ultrasonic methods, magnetic field methods, eddy
current methods or thermal field methods (Doebling et al., 1998), which require that the vicinity of the damage
parts are known and accessible prior to the experimentation, some techniques are proposed which use data
related to vibration characteristics of the damaged structure for damage detecting. The underlying idea of
vibration-based damage identification methods is that the dynamic characteristics and response of structures are
contingent on their mass, damping and stiffness properties, which are affected by damage. Therefore, one may
extract the location and intensity of damage from vibration data of a damaged structure.

Vibration-based damage identification methods can be categorized by dynamic characteristics that
they use and the approach that they employ to correlate different damage scenarios to dynamic properties.
Some techniques investigate changes in natural frequencies (Fan and Qiao, 2011), mode shapes (Bell et al.,
2007) ,mode curvatures(Wang et al., 2000), modal strain energy (Zhang et al., 1998) or dynamic flexibility
(Gao and Spencer, 2006) to locate and quantify damage in a structure. There are other methods using
frequency response functions towards that purpose (Sohn et al., 2004). Some approaches adopt a
combination of the artificial neutral network (ANN) and principal modal components (PCA) to detect
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damage (Bamdara et al., 2014), whereas there are other methods that establish sensitivity equations as a
relation between a damage scenario and the measured dynamic response (Araujo dos Santos et al., 2000).
This study focuses on damage detecting methods based on model updating.

Larsson and Sas (Larsson and Sas, 1992) developed a model updating technique utilizing an exact
dynamic condensation in which the objective function does not require the computation of the impedance
matrix. They emphasized that the desired frequency range, which can be updated, is inherently limited by the
condensation procedure. Incomplete measurements and their implication on the frequency response function
(FRF) model updating formulation seem to restrict the method’s ability to update larger finite element models
(FEM). Araujo dos Santos et al. (Araujo dos Santos et al., 2000) proposed a damage detecting technique based
on the sensitivity of orthogonality conditions structures to damage. They solved the sensitivity equations by the
least square method. Modak et al. (Modak et al., 2002) employed a direct method and an iterative one for
model updating using measured mode shapes and frequency response functions respectively. They reported that
the iterative method results in predictions that are more accurate. Araujo dos Santos et al. (Araujo dos Santos et
al., 2005) presented a damage identification technique based on FRF sensitivities. Their technique leads to a set
of linear equations, which is solved using an algorithm that constrains the solution to be physically admissible.
They performed a damage simulation and identification on a laminated rectangular plate.

Esfandiari et al. (Esfandiari et al., 2009) presented a FRF-based finite element model updating
algorithm using the harmonic forced vibration FRF of the damaged structure. They correlated the changes in
the FRF of structures due to damage to the changes of stiffness, mass and damping properties through damage
sensitivity equations, which can be solved using the least square method. In another study (Esfandiari et al.,
2010), Esfandiari et al. proposed a structural model updating technique using FRF data and measured natural
frequencies of the damaged structure without any expansion of the measured data or reduction of the finite
element model. They constructed sensitivity equations derived using the change of eigenvectors and measured
natural frequencies of the damaged structure. They also expressed the change in eigenvector as the linear
combination of the original eigenvectors.Zheng et al. (Zheng et al., 2015) presented an approach for structural
damage identification based on the response power spectral density sensitivity analysis. They used stationary,
random excitation with pseudo-excitation method (PEM) to obtain the dynamic response of structures and
sensitivity of the power spectral density with respect to the damage parameters.

In the present study, a structural model updating approach is proposed using the power spectral density
function and measured natural frequencies of the damaged structure without any expansion of the measured
data or reduction of the finite element model. The sensitivity equations are constructed through expressing
the change in power spectral density function in terms of the change in stiffness that is caused by the change
in eigenvectors and measured natural frequencies of the damaged structure. The eigenvectors are also
expressed as a linear combination of the original eigenvectors. The least square method is adopted to solve
the sensitivity equation set through a proper weighting procedure.

THEORETICAL BACKGROUND

The power spectral density function of a system can be defined as:
ج

(
1)

Where is the frequency response function and and are output and input power spectral density functions,
respectively (Newland, 1993).The frequency response function of a system with degrees of freedom is defined as:

(
2)

Where , and are the mass, damping and stiffness matrices of the system, is the frequency of the
excitation load and indicates the natural frequency of the rth mode. The response of the structure to a unit
harmonic load can be expressed as below by spectral decomposition:

(
3)

represents the entire impedance matrix where and indicate the measurement and excitation
points, respectively. , and represent mode shape, natural frequency and damping of the rth
moderespectively.The power spectral density function of a damaged structure is defined as:
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that should be calculated. The rth mode shape of a structure after changes due to the damage is considered as:

(
5)

Where the index represents the dependency of the parameter to the damaged structure and represents
the change in rth mode shape due to the damage. Substituting Eq.5 in Eq.3 for the damaged structure leads to:

(
6)

Assuming that the first natural frequencies of the damaged structure be available and neglecting
the second order terms, Eq.6 can be rewritten as:

(
7)

As the measurement of the natural frequencies is feasible with high accuracy, the approximation of
Eq.7 is realistic. The last term of the Eq.7 is related to unmeasured part of the natural frequencies that would
compensate the effect of incomplete measurement. Moreover, the first term of this equation can be calculated
using the properties and eigenvector of the intact structure and measured natural frequencies of the damaged
structure. The other two terms of the equation which includes the mode shape changes, should be evaluated
in an accurate way. To estimate these terms, the rate changes of modal vector of mode shapes of a structure
is considered as a linear combination of eigenvectors for all modes. Thus, the mode shape changes in a
structure caused by damage can be defined by the following first order series (Esfandiari et al., 2010).

(
8)

Where,
(

9)

The damage is presumably related to the stiffness loss of the system only, and the actual damage
caused by mass changes is negligible in reality. Therefore, is equal to:

(
8)

As the expansion in Eq.10 does not require the derivation of the denominator in Eq.3, it is barely
nonlinear in comparison to using Taylor series expansion.Substituting Eq.10 in Eq.7, leads to:

(
11)
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The first two terms of the right hand side of Eq.11 is known using natural frequencies of damaged
structure and the eigenvectors of the intact structure and is measured. The known part can be expressed as:

(
12)

The unknown parts of Eq.7 can be expressed as:

(
13)

Equation7 can be rewritten as follows:

(
14)

Therefore, Eq.4 can be defined as:

(
15)

By separating the known terms of Eq.15 and neglecting the second order terms one obtaines:

(
16)

Where
(

17)

The stiffness matrix of each element of a structure can be defined as:

(
18)

Where is the eigenvector of nonzero eigenvalues of the stiffness matrix and is corresponding
nonzero eigenvalue of the stiffness matrix. The matrix for the whole structure can be defined in global
coordinates as the following:

(
19)

Where is the transformation matrix of the element from local to global coordinates and is the
total number of elements. Thus, the stiffness matrix of the structure in global coordinates is defined as:

(
20)

The stiffness matrix of the damaged structure can be defined as:

(
21)
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Where is the change of elemental stiffness due to the damage. The can be expressed as:

(
22)

considering Eq.13 and Eq.22, can be defined as:

).

(
23)

Where the operator ” indicates the entries of a diagonal matrix as a vector and vice versa. The
coefficient of is the sensitivity matrix of the degree of freedom when subjected to the applied unit load
at the degree of freedom. Eq. 23 can be rewritten as:

(
24)

where is the total sensitivity matrix, and is the vector of all stiffness changes. It is possible to
solve Eq.24 with different methods like least square method (LS), non-negative least square (NNLS)and
singular value decomposition method (SVD). In this study the LS method is used to solve the equation. Since
it is possible that the LS method be dominated by equations with larger coefficients, a weighting technique is
needed to prevent the information of some equations to be overshadowed by some others.  Therefore, to
improve the quality of the predicted damage, a weighting technique can be applied to the equations. There
are different methods for weighting the equations. Kwon and Lin (30) state that weighing the sensitivity
equation by decreases inaccuracy of the finite element modeling at higher frequencies. The sensitivity of
the PSD increases in higher frequency ranges. However, due to larger approximations at the higher
frequencies, the weight of the sensitivity equations in this range must be decreased.  Thus, in this study each
sensitivity equation is multiplied to the associated to smooth the effect of higher frequencies.

Another important issue in sensitivity-based model updating methods is the noise polluted the
experimental data which may cause convergence to a local minimum. At proximity of natural frequencies of
the damaged structure this noise can have serious effects on the response because of the term in
equations. There are other types of errors which can cause problems in such methods like mass modeling
errors which means the error associated with the mass of modeled intact structures and the errors of
measuring natural frequencies. Therefore, the proposed methods in this area should be robust to these errors.

NUMERICAL RESULTS

The finite element model of a 2-D truss consisting of 35 elements and 16 DOFs is considered. The
elements are made of steel with Young’s modulus of 20 Mpa and cross sectional areas given in Table 1.
Also, the kinematic DOFs of the truss model are shown in Fig.2.

Figure 1. Geometry of truss model
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Figure 2. Free Degrees of freedom of the truss

Table 1. Cross sectional area of the truss elements
Element Number Area ( )

1-8 1.8
9-16 1.5

17-23 1
24-35 1.2

The location, severity and the number of damage elements can affect the results of a damage detecting
process. Therefore, several damage scenarios listed in Table2, are considered to investigate the strength of the
procedure presented in this study. In practical cases, the power spectral density function of the damaged
structure is acquired by an experimental setup. Here, the finite element method is adopted to simulate the power
spectral density function while including some virtual measurement errors in regard to probable uncertainties.
In each scenario, a single harmonic excitation is applied to DOFs 9, 13, 15, 17 and 19 (the corresponding entity
on the diagonal of the matrix Sff is set as 1 while the rest remain zero) for each load case. Also, DOFs 7, 9, 11,
14, 17, 18, 27 and 28 are chosen to be the locations where the response is being monitored.

Table 2. Damage scenarios

Scenario No. Element number and damage Percentage

1 Element number 5 14
Damage percentage 30 50

2 Element number 4 16 23
Damage percentage 40 50 60

3 Element number 3 11 32 35
Damage percentage 30 30 30 30

4 Element number 7 19 27
Damage percentage 30 40 30

5 Element number 2 9 13 29 33
Damage percentage 30 40 50 40 30

6 Element number 6 20
Damage percentage 40 70

The frequency ranges of the excitation that is selected to construct the sensitivity equations are
summarized in Table 3. These frequency ranges are the ones in which the left hand side of the sensitivity
equation (Eq. 17) is large enough so that the chance of successful predictions of the damage location
and its severity improves.

Table 3.Selected frequency ranges for model updating

Damage Scenario 1 2 3 4 5 6

Frequency 218-224 218-223 221-226 222-227 209-214 250-255

Range 228-234 227-232 230-235 231-236 218-223 259-264

288-294 301-306 294-299 292-297 293-298 303-308

298-305 310-315 303-308 302-304 302-307 312-317

313-319 319-324 314-319 308-313 313-318 332-337

323-330 328-333 323-328 329-334 322-327 341-346

As mentioned before, natural frequencies and the power spectral density function, which are
obtained by experimentation in reality, are simulated numerically in this study. In practical cases, there are
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some errors in measurement and data processing that can have adverse effects on the results. Here, a uniform
random 5% error is included in the power spectral density function computed by the finite element method
fortaking into account the existing inaccuracies of experimental data. The results of damage detection using
the proposed formulation are depicted in Figs. 3-8.

Figs. 3-8 indicate that the performance of the proposed approach for detecting the location and the
severity of damage in the structure is promising. In order to gain a better evaluation of the accuracy of
results, some indices quantifying the discrepancies are defined. An average value of the

absolutediscrepancies between the true damage values ( ) and the predicted damage ones ( ) is obtained
by the mean sizing error (MSE)(Kim and Stubbs, 1995):

(25)

In addition, the relative error and the closeness index defined as,

(26)

Figure 3. Actual and predicted damage of scenario 1 using noisy data Figure 4. Actual and predicted damage of scenario 2 using noisy data

Figure 5. Actual and predicted damage of scenario 3 using noisy data Figure 6. Actual and predicted damage of scenario 4 using noisy data

Figure 7. Actual and predicted damage of scenario 5 using noisy data Figure 8. Actual and predicted damage of scenario 6 using noisy data

represent the distance between the true and estimated damage parameter vectors. An element is identified as

damaged if (Kim and Stubbs, 1995). Clearly, the smaller values of the MSE and RE and larger
values of the CI show better results. The damage indices of all damage scenarios are presented in Table 4.
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Table 4.Comparison of damage indices
Damage Scenarios MSE RE CI

1 0.006 0.0025 0.9917
2 0.015 0.0122 0.9828
3 0.0189 0.0071 0.9747
4 0.0275 0.0276 0.9697
5 0.025 0.0187 0.9685
6 0.0472 0.458 0.9462

In order to investigate robustness of the method, standard deviations of the predictedunknown
parameters are also evaluated. Small standard deviations indicate that the results are less scattered and more
reliable. The coefficient of variations (COV) of the estimated unknown parameters corresponding to cases
shown in Figs. 3-8 are plotted in Figs. 9-14 respectively.In some cases a uniform random 0.5% error is
introduced in the natural frequencies of the damaged structure which are computed numerically to investigate
the effect of probable inaccuracies occurring in experimental values. The results are summarized in Table 5.

Table 5. Comparison of damage indices considering uncertainties
of measured natural frequencies

Damage Scenarios MSE RE CI
3 0.0467 0.0479 0.9458
6 0.0163 0.0066 0.9771

In addition to errors regarding experimental data, there may also be some discrepancies between the
assumptions used in the mathematical model of the structure. A uniform random 5% error is applied to the
specific weight of elements in computing their mass matrices in order to involve the uncertainties existing in
mathematical modeling of the structure. Results of the damage detecting process of two cases (3 and 7) by
inaccurate mass matrices are presented in Table 6.

Table 6. Comparison of damage indices considering uncertainties of the mass matrix
Damage Scenarios MSE RE CI

3 0.0573 0.0035 0.9166

Figure 9. Coefficient of variations of estimated parameters of
scenario 1

Figure 10. Coefficient of variations of estimated parameters of
scenario 2

Figure 11. Coefficient of variations of estimated parameters of
scenario 1

Figure 12. Coefficient of variations of estimated parameters of
scenario 2
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Figure13.Coefficient of variations of estimated parameters
of scenario 5

Figure14.Coefficient of variations of estimated
parameters of scenario 6

CONCLUSION

A structural damage detection method is presented using the power spectral density function and
measured natural frequencies. The damage is considered as the change of stiffness parameters corresponding to
elements. The change of the power spectral density function is expressed in terms of the change in mode shapes
and natural frequencies. The sensitivity equations are established through correlating the change of the power
spectral density function of the structure to damage in elements. Sensitivity equations are solved by the Least
Square method to compute change of structural parameters. Results of a truss modelshow the ability of this
method to identify location and severity of parameters change at the elemental level in a structure.
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