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ABSTRACT

In this paper, a new method is proposed for structural damage detection using Basis Pursuit and
earthquake time history analysis. The sensitivity matrix of structural responses with respect to elemental
damage is established and solved by a new spars recovery method named Basis Pursuit (BP). The Simplex
method is chosen as a linear programming method to solve the system of equations. The process detects the
damage locations and extents using the time-history responses of structure. The efficiency of the proposed
method is investigated using Monte Carlo simulation. The results are compared with Pseudo-inverse method
results. The proposed method is applied to a cantilever beam and a planar truss. The proposed method
efficiently detects the damage locations and extents. The running time of the proposed method is compared
with some other methods. The simulation results demonstrate the roubostness and efficiency of the proposed
method.

INTRODUCTION

In recent years a great deal of work has been carried out on development of methods to detect the
location and extent of structural damage. A class of non-destructive damage detection methods is the
vibration based method using dynamic responses such as natural frequencies and mode shapes (Doebling et.
al., 1996; Sohn et. al., 2004). Gue and li (2009) proposed a two-stage method to determine the location and
extent of multiple structural damages. At the first stage, the damaged sites were localized using the evidence
theory for frequencies and mode shapes data. At the second one, micro search genetic algorithm of elitists
was employed to improve search efficiently.

Some common methods of solving the system of equations are pseudo-inverse method, least square
method and non-negative least square method. Recently, some new methods are used to solve the problem
such as Orthogonal Matching Pursuit (OMP) (Pati et. al., 1993) and Basis Pursuit (BP) (Chen et. al., 2001).
The sparse recovery characteristics of BP are considered by Chen et. al. (2001) and Donoho and Elad (2006).
The matching pursuit (liu et. al., 2002) and basis pursuit (Yang et. al., 2003) were applied to identify damage
bearings effectively. Yang et al. (2007) presented a procedure to detect the fault of rolling element bearings
which combined the basis pursuit and a Feed Forward Neural Network (FFNN) classifier. Also, the results of
BP and MP methods for fault diagnosis of rolling element are compared using vibration analysis. The
comparison demonstrated that Basis Pursuit feature-based fault diagnosis is more accurate than Matching
Pursuit feature-based fault diagnosis in detecting the faults. Ryan et. al. (2009) proposed a different approach
to detect the damage using FRFs and OMP method. They calculated the residual damage based on FRF data
from a possibly damaged system and a Finite Element Model (FEM) of the healthy system. This residual
damage builds a system of equations to relate the damage residual to the actual damage on each element. For
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the systems subject to the noise, OMP method is used to overcome the issues. A two stage method using
basis pursuit and genetic algorithm was proposed (Gerist et. al., 2012). In their method, the sensitivity matrix
of structural responses with respect to elemental damage is established to be solved by Basis Pursuit (BP)
using the frequencies of structure. In the final stage, they used the continuous genetic algorithm optimization
method to improve the solution.

In this paper, a new method is presented to detect the damage extents and locations. First, the
sensitivity matrix of structural responses with respect to elemental damaging is established using finite
difference method with random intervals to be solved by BP method. The simplex method is chosen as a
linear programming method to solve the system of equations. The efficiency of the proposed method is
investigated using Monte Carlo simulation. The proposed method is applied to a cantilever beam and a
planar truss.

DAMAGE DETECTION

The structural damage detection problems can form a set of equations. To solve the equations, a set of
damage variables should be found to equalize the analytical and measured responses of the structure in an
optimal way. The equation is considered as follows:
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in which, hR , X and S are response vector of the healthy structure, damage vector change and
sensitivity matrix of structural responses, respectively. This information is referred to as sparse
approximation (Chen et. al. 2001). An explosion of interest in regularization via sparsity constraints has been
happened in the last two decades. Hence, some approximate solutions are considered for linear systems in
which the unknown has few nonzero entries relative to its dimension. So, the main object of this paper is to
find the sparsest solution of the linear system.

BASIS PURSUIT

In classical theory of linear algebra, when measurements of an equation are fewer than unknowns, the
problem is undetermined and the solution is generally not unique. The mathematical expression of the set of
linear equations is as follows:

bxA  (3)

where b is a vector of interest mRb and x is a subspace of nR . A is a matrix of nmR and is named
dictionary matrix when each columns of it is normalized. So the aim is to identify a solution with minimal
support using sparse representation. To solve Eq. (1), a model can be found when x is known to be S-sparse
for some nS 1 , which means that at most S coefficients of x can be non-zero. In principle, only S
measurements are required to reconstruct x rather than n.

Three criteria are related to the notion of sparsity: the 0l , 1l and the 2l norms of x. The 0l norm is the
unique sparsest solution and it is evaluated as bellow:
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Unfortunately, the 0l sparse approximation is at least as hard as a general constraint satisfaction
problem even with no restrictions on A and b. Hence, Eq. (1) requires non-polynomial time to be solved and
it is computationally intractable. In fact, the problem is NP-hard in general because 0l minimization is not a
convex optimization problem and its complexity exponentially increases with the number of dictionary
matrix columns (Natarajan, 1995; Davis et. al., 1997). The 2l -norm which is in fact the least square solution
is evaluated by:
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where, ix is the ith component of vector x. Computation of 2l minimization is efficiently less time-

consuming than 0l . The result of 2l minimization, x' , doesn’t mach the one of 0l , x. Recent studies of this
problem show that it can be solved for some cases by either greedy or convex programming approaches. A
new convex and tractable approach is presented as Basis Pursuit which uses 1l minimization to solve the

problem (Chen et. al. 2001). The 1l -norm is the summation of the absolute value of x components that can be
expressed mathematically as:
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The 1l minimization can be solved in polynomial time. The sparse vector x is reconstructed exactly

from Eq. (1) and Eq. (7). So the 1l norm exactly recover the 0l one and x* is equal to x. BP is closely
connected with Linear Program (LP) and it works whenever the dictionary matrix is sufficiently incoherent.
It roughly means that dictionary matrix entries are uniform in magnitude. The Basis Pursuit (BP) method is
used for linear equations while the structural damage detection problem is a set of nonlinear equations.
Considering an admissible approximation, the damage detection problem can be solved as a linear problem
by BP.

The sensitivity matrix of the structure is calculated by the Finite Difference Method.

CASE STUDY

In this part, the proposed method is verified by two different case studies. The damage is simulated by
reduction in Young modulus of the elements. The Bam earthquake and average acceleration method is used
for time-history analysis. To demonstrate the efficiency and accuracy of the proposed method, the proposed
method is investigated by Monte Carlo simulation and the results are compared with Pseudo-inverse method
(PI). Also, run time of the proposed method is compared with CGA-SBI-MS (Naseralavi et. al., 2010) and
BP-CGA (Gerist et. al., 2012) using the modal responses of the structure. Only the data of the first three
seconds of the earthquake is used.
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A 15-ELEMENT CANTILEVER BEAM

A fifteen-element cantilever beam is considered to illustrate efficiency of the proposed method. It has
been previously studied by Koh and Dyke (2007). The geometrical and physical data are as follows: the

length of beam is 2.74 m; the modulus of elasticity is 211 N102 m ; the thickness and width are 0.00635 m
and 0.0760m, respectively. The elements are numbered from the fixed end as shown in Fig. 1.

Figure 1. A 15-element cantilever beam

The 4th and 12th elements of the cantilever beam have been assumed to be damaged by the extent of
30%. The damaged elements are efficiently detected by the proposed method as shown in Fig. 2.

Figure 2. Solution results for the 15-element cantilever beam:
(a) damage identification results (b) convergence history of basis pursuit

The Monte Carlo simulation results of the beam with 10000 times run are shown in Fig. 3. The
damage extents of the elements affect the results of the BP method and the error percents increase by
increasing the damage extents by BP method. The error percents of BP method are considerably less than the
Pseudo-inverse method (PI) for low number of damage elements.
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Figure 3. Monte Carlo results of Basis Pursuit (BP) and Pseudo-Inverse (PI) methods for 15-element beam:
(a) damage extent is 20% (b) damage extent is 30% (c) damage extent is 40%

Also, run time of the proposed method is significantly less than CGA-SBI-MS and BP-CGA as
shown in Table 1.

Table 1. The run time of 15-element cantilever beam
First stage time (sec) Second stage time (sec) Total time (sec)

BP-CGA 2.25 4.2 6.45

CGA-SBI-MS - - 17.25

Proposed method - - 5.14

A 31-ELEMENT PLANAR TRUSS

A 31-bar planar truss which has been studied by Messina (1998) is selected to demonstrate the
capability of the proposed algorithm, as shown in Fig. 4.

Figure 4. A 31-bar planar truss

The 11th and 25th elements of the planar truss are considered to be damaged by the extent of 50%. The
process results are shown in Fig. 5. As it can be seen, the proposed method detects the damage elements
efficiently.
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Figure 5. Solution results for the 31-element planar truss:
(a) damage identification results (b) convergence history of basis pursuit

The Monte Carlo simulation results of the truss with 10000 times run are shown in Fig. 6. The results
are approximately the same as the beam and BP method significantly has less error than PI.

Figure 6. Monte Carlo results of Basis Pursuit (BP) and Pseudo-Inverse (PI) methods for 31-element planar truss:
(a) damage extent is 20% (b) damage extent is 30% (c) damage extent is 40%
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Also, run time of the proposed method is significantly less than CGA-SBI-MS and BP-CGA as shown
in Table 2.

Table 2. The run time of 31-element planer truss
First stage time (sec) Second stage time (sec) Total time (sec)

BP-CGA 6.46 7.03 13.49

CGA-SBI-MS - - 43.04

Proposed method - - 4.68

CONCLUSIONS

Damage detection problems are equivalent to a system of equations which relates the damage extents
to the structural responses. To solve the system of equations and detect the damage extents and locations, a
new method is presented using Basis Pursuit (BP). Basis pursuit method solves the sparse problems using
linear programming. Two numerical examples are simulated to detect the damages by the proposed method:
a 15element cantilever element and a 1element planar truss. The time history responses of the structures are
used to detect the damages. The proposed method efficiently detects the damage locations and extents. This
method subsequently requires less time to detect in compare with BP-CGA and CGA-SBI-MS. The
efficiency of the proposed method is investigated using Monte Carlo simulation and the results are compared
with Pseudo-inverse method (PI). The damage extents of the elements affect the results of the BP method
and the error percents increase by increasing the damage extents by BP method. The error percents of BP
method are considerably less than PI for low number of damage elements.
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