

SEISMIC RETROFIT OF HISTORICAL AND EXISTING BUILDINGS

Salim CHEMALY Engineer ENPC- Paris, MESC, Beirut, Lebanon salimchemaly@gmail.com

Keywords: Earthquake Engineering, Retrofit, Old and New Buildings, Saves Lives, Eco-friendly

ABSTRACT

RÖFIX SismaCalce, a new fiber-mortar composite applied on MASONRY walls, ignoring the steel reinforced concrete structure, is the perfect solution for **Earthquake protection**. Karlsruhe Institute of Technology (KIT) and RÖFIX has developed an anti-seismic reinforcement system consisting of (1) RÖFIX SismaProtect, a multi-axial hybrid high-tech tissue, synthetic and glass fibers, alkali- and corrosion- resistant, with (2) RÖFIX SismaCalce coating, a mineral mortar of NHL-Lime + white cement + polymer + bonder by penetrating chemical reaction agent.

Traditional stone and block masonry buildings have low ductility and are usually severely damaged during strong earthquakes. Their collapse could cause building destruction, occupants and passersby loss. Existing walls retrofitted with the new KIT and RÖFIX system, gain high ductility and low modulus of elasticity and adapt perfectly to the different requirements of new buildings, but also and especially of old and existing ones. During earthquake, the system improves the seismic stability of the global structure: retrofitted masonry walls becoming the main elements of building stability, working as sheer resistant walls holding the slabs. The earthquake-induced movements and energies in the masonry can be absorbed through the fiber mesh (Figure 1). Forces and force peaks distributed in the mesh are reduced by the special mortar (Figure 2). Although cracks and partial damages of the structure develop a complete collapse, however, can be prevented, saving human lives.

This innovative, economic and eco friendly system also offers thermal insulation and vapor diffusion permeability. It ensures safety, energy conservation, quality of life and property value. It is easy to handle and can be embedded on all masonry walls.

Figure 1. RÖFIX SismaProtect Fibers overcome the shear strength

Figure 2. RÖFIX SismaCalce Stone + mortar overcome the compression strengt

SISMA CALCE MATERIAL PROPERTIES CALCULATION - KIT

Professor Doctor-Engineer Lothar Stempniewski and Engineer Moritz Urban, Karlsruhe Institute of Technology, Germany, established calculations of material properties and fiber reinforcement.

Parameters for in-plan shear :

With $f_m =$ compressive strength masonry; $f_{tk} =$ tensile strength masonry; $f_d =$ designed compressive strength of masonry; p = average normal pressure in the wall;

International Institute of Earthquake Engineering and Seismology (IIEES)

SEE 7

Damage Case b) Shear sliding

$$\begin{split} f_{vk0\,=} & \text{initial shear strength of masonry under} \\ & \text{zero compressive strength} \\ & \text{v} = \text{compressive strenght perpendicular to shear} \\ & f_{vk} = \text{ shear strenght of masonry} \\ & V_{Rd} = \text{design value of shear resistance} \end{split}$$

EC 6 : (Table 1)				f_{vk0} in N/mm ²		
	in N	/mm ²		Thin layer of mortar	Light mortar	
2,5	5	10	20	(joints between 1 - 3 mm)		
0,08	0,18	0,22	0,26	0,22	0,18	

Damage Case c) Shear/Tension failure

 f_{vk0} = initial shear strength according EC 6 (Table 1) n = number of sisma calce layers being applied (1 or 2) f = 0,433 for SismaCalce

 $\begin{array}{ll} T_{f} = n \ . \ f_{f} \ . \ l_{netto} \ . \ sin \ (\) \ with \ \ f_{f} \ = 17,9 \ N \ / \ mm^{2} \\ = \ angle \ between \ brick \ \& \ horizontal \ wall \ joint \ : \\ SismaCalce \ 30^{o} \ ; \qquad \qquad t = \ wall \ thickness \ (mm) \\ \end{array}$

$$\begin{split} l_{cal} &= h_r \ \text{tan} \ (\) \quad \text{with} \quad h_r = \text{wall height} \ (mm) \ \& \\ &= \text{crack angle}: "standard walls" ~ 25^\circ\text{--} 40^\circ\text{, slender} \\ \text{walls}: 10^\circ\text{--} 20^\circ \end{split}$$

 $k_{eq} = 1 - g_{max}$; Reduction of vertical acceleration due to max. vertical acceleration for earthquake used v = average pressure caused by vertical loads acting for seismic design (vertical earthquake acceleration not included)

International Institute of Earthquake Engineering and Seismology (IIEES)

 $V_{RK} = min \{ V_{RK}^{shear}; V_{RK}^{tension} \}$ $V_{RK}^{shear} = f_{vk}^{mod} \cdot l_{cal} \cdot t + n \cdot \int_{f}^{90} \cdot T_{f}^{90}$ $f_{vk}^{mod} = (f_{vk0} + n \ . \ _f \ . \ T_f \ . \ cos \ \ / \ l_{cal} \ .t) + \mu \ (k_{eq} \ . \ _{v \ +} n \ . \ _f \ . \ T_f \ . \ sin \ \ / \ l_{cal} \ .t)$ ${V_{RK}}^{tension} = {f_{bt,cal}}^{mod} \ . \ l \ . \ t \ / \ 2,3 \ . \ (1 + \ _v) \ . \ e1 + N_{Rd} \ / \ f_{bt,cal}}^{mod} \ . \ l \ . \ t$ $f_{bt,cal}^{mod} = f_{bt} + n . \quad _{f} \quad / t . (f_{f}^{90} . \cos^{2} \ + f_{f}^{0} . \sin^{2} \ + f_{f}^{0} . \cos^{2} | \ - |)$

Damage Case d) Compression failure

According Schubert: $f_m = a \cdot f_b^{\ b} \cdot f_{mo}^{\ c}$

 $f_m = compressive strength of masonry$ f_b = compressive strength of brick f_{mo} = initial compression strength in masonry

Stone	а	b	с
Solid stone	0,73	0,73	0,16
Hollow brick	0,55	0,56	0,46
Lime Sandstone	0,7	0,74	0,21

Important: Strength of mortar and brick:

Compression-compressioncompression

Calculation of missing properties

According Italian code Equation (1): $f_{tk} = 1,5.f_{vk0}$		Т	Table EC6 :		
	f _{m0}	2,5	5	10	20
Equation (2) : $f_m = 0.7 \cdot f_b$	f _{vk0}	0,08	0,18	0,22	0,26
Equation (3): $f_{tk} = 1/15$. f_b	Interpolation	0,1268	0,21096	0,24208	Calculated
Equation (4): $f_m = a \cdot f_b^{\sigma} \cdot f_{mo}^{\sigma}$	Value f _m	3,67	8,87	15,52	To put in

EXPERIMENTAL TESTS - PADOVA (ITALY), AND IZIIS (SKOPJE, MACEDONIA)

"Out of plan" tests

Non-reinforced wall

Walls Reinforced with Sisma Calce

Resistance for "out of plain" by reinforced wall has demonstrated increasing of resistance for approximate 54% and increasing of maximum deformation for 35%.

IN- PLAN STRENGTH TEST

<u>Testing results of W2 type wall elements</u> to diagonal compression up to failure

Giving Shear and Tensile strengths Case of <u>Non Retrofitted</u> Wall

Wall element	Date of testing	Cross-section A (cm ²)	Maximum axial force P _{max}	$\begin{array}{c} Comprehensive \\ strength \\ c = u = P_{max} \\ cos45^{o} / A (kPa) \end{array}$	Tensile strength F _t
			(kN)		(kPa)
W2-1	16.04.13	725	51	497	307
W2-2	24.04.13	725	43	419	259
W2-3	25.04.13	725	48	468	289

Testing results of W2R type <u>Retrofitted wall</u> elements to diagonal compression up to failure

			Comprehensive Shear	Tensile strength	
Wall	Date of	Maximum axial	Stress	\mathbf{F}_{t}	Ductility
element	testing	force	$c = u \equiv$	(kPa)	capacity
		P _{max} (kN)	$P\cos 45^{\circ}/A$ (kPa)		
W2-4R	22.08.13	150	1462	903	5.1
W2-5R	23.08.13	128	1248	771	5.9
W2-6R	27.08.13	97	946	584	7.1

Testing results of W2S type Retrofitted wall elements to diagonal compression

			Comprehensive Shear	Tensile strength	
Wall	Date of	Maximum axial	Stress	\mathbf{F}_{t}	Ductility
element	testing	force	c = u =	(kPa)	capacity
		P _{max} (kN)	$P\cos 45^{\circ}/A$ (kPa)		
W2-7S	29.08.13	138	1345	831	5.1
W2-8S	30.08.13	140	1365	843	5.5
W2-9S	02.09.13	165	1579	976	7.5

Two side retrofitted wall element

Appearing of high ductility (3 times higher)

One side retrofitted wall element

Increasing of shear resistance for 300%

Damages on SismaCalce retrofitted model (1,22 g)

		inp	BM -	Non Ret	rofitted		BM	- SR - Sism	a Calce	
Earthquake	an 6	ut acc ^m	acc top	W all	I D top	Damages	nce ^{top}	L D top	Vall	Domogos
	$_{9}^{\rm Sp}$	(g)	(σ)	(mm)	LP ^{foun.}	Damages	(σ)	(mm)	LP ^{foun.}	Damages
		(8)	(5)	(11111)	(mm)		(5)	(IIIII)	(mm)	
Petrovac	36	0,16	0,26	6,4	0,34		0,25	5,7	0,29	
Northridge	16	0,18	0,34	13,5	0,26		0,21	12,8	0,21	
Petrovac	40	0,18	0,29	6,9	0,58		0,28	6,4	0,52	
El Centro	75	0,21	0,35	16,4	0,91	Initial	0,32	15,9	0,86	
Petrovac	45	0,20	0,32	7,8	0,77	fine	0,30	7,0	0,73	
Northridge	20	0,21	0,42	17	0,98	cracks	0,28	15,8	0,62	
El Centro	80	0,27	0,52	11,6	1,20	Further	0,37	10,9	1,11	
Northridge	25	0,23	0,47	21	1,04	propagation	0,33	20	0,79	
						of				
						initial cracks				
Petrovac	50	0,22	0,41	8,9	1,14		0,36	8,4	0,94	
Petrovac	70	0,32	0,61	12,2	1,29	Damages	0,55	11,9	1,60	Initial
Petrovac	75	0,35	0,71	13,9	1,54	development	0,51	12,2	1,64	fine
Petrovac	100	0,51					0,91	16,9	2,80	cracks
Petrovac	120	0,60					1,09	20,3	2,98	Further
El Centro	100	0,31					4,41	21,7	1,35	propagation
Petrovac	150	0,82					1,29	23,9	4,26	of
										initial cracks
Petrovac	180	0,92					1,58	28,9	11,40	
Petrovac	220	1,03					1,76	36,99	20,10	Damages
		5								development
Petrovac	260	1,22					2,1	44,7	26,40	
								Addition	nal resistand	ce for
								retro	ofitted mode	el

Experimental values of tested Earthquake : Results comparison for both models

CALCULATIONS AND MATERIAL PROPERTIES

Mortar joint cracking

Behavior of composite material

Stone cracking

Behavior of stone

CALCULATION OF FIBER REINFORCEMENT DAMAGE CASES:

Modification of shear strength with SismaCalce:

 $f_{vk}^{reinforced} = f_{vk0} + (n / t) \cdot f_{f}^{30} \cdot f_{f}^{30} \cdot \cos 30^{\circ}$

n = fibres layers number ; t = wall thickness (mm); f^{30}_{f} = bonding efficiency factor for SismaCalce

43,3%; f_f^{30} = Strength of fibres; f_f^{90} = 1960 N / 50mm; f_f^{0} = 1817 N / 50mm; f_f^{30} = 895 N / 50mm Modification of tensile strength with SismaCalce:

$$f_{bt,cal}^{\ \ mo} = f_{bt,cal} + n \ . \ \ _f \ /t. \ (\ f_f^{\ 90} \ \ . \ cos^2 \ \ + \ f_f^{\ 0} \ \ . \ sin^2 \ \ + \ f_f^{\ 0} \ \ . \ cos^2 \mid \ - \ \mid)$$

Easy equations:

Modification of shear strength with Sisma Calce:

$$f_{vk}^{strength} = f_{vk0} + (n / t) . f_{SC,shear} / t = f_{vk0} + n . 6,71$$
 N/ mm . t

Modification of tensile strength with Sisma Calce:

 $\mathbf{f}_{bt}^{strength} = \mathbf{f}_{bt} + (n / t) \cdot f_{SC, tension} \cdot (h / l)$

Height / Length (h/l)	4	2	1	0,5
$f_{SC,tension}$	19,55 N / mm	21,37 N / mm	23,58 N / mm	24,44 N / mm

Calculation of fiber reinforcement (Example)

Type of wall	Non-	One side	Two side	Non-	One side	Two side
	reinforced	reinforced	reinforced	reinforced	reinforced	reinforced
	f_{vk0}	f_{vk0} (N /	f_{vk0} (N /	f _{bt}	f _{bt} (N /	$f_{bt} (N / mm^2)$
	(N / mm^2)	mm ²)	mm ²)	(N / mm^2)	mm ²)	
Solid brick 200 mm	0,11	0,143	0,177	You must establish these values		
Solid brick 250 mm	0,11	0,137	0,164	experimentally		
Hole brick 200 mm	0,23	0,263	0,297	0,97	1,24	1,51
Hole brick 250 mm	0,23	0,257	0,284	0,97	1,188	1,406

Material Properties of different Stones. In Laboratories.

Unit: $(MN / m^2) = MPa$

Material	f_{tk}	f _{vk0}	f _m	f _{bm}	f _{bk}	w (kN/m^3)
Hollow brick	0,3 (1)	Norm: 0,2?	7,35 (2)	10,5	7,35	
Hollow brick Isoledil	1,93 (3)	0,2 (N)	20,3 (2)		29	7,2
Solid brick	1,26 (3)	0,1 (N)	13,3 (2)	15	19	17
Hollow brick before 1970	0,8 (3)	0,2 (N)	8,4 (2)	12		
Hollow rick after 1970	1 (3)	0,2 (N)	10,5 (2)	15		
Solid brick before 1970	1 (3)	0,1 (N)	10,5 (2)	15		
Solid brick after 1970	1,33 (3)	0,1 (N)	14 (2P)	20		
Aquila natural stone	11,73	0,12 (EC6)	40,14 (4)	164,5		26
Lime sandstone KA 2DF	1,53	0,11	7,72 (4)	20,57		20

EARTHQUAKE-RESISTANT PROTECTION RÖFIX SISMACALCE SYSTEM BENEFITS

- Saves human lives

- Improves buildings stability and ductility, a considerable deformation of the building can be achieved

- Increases the load-bearing capacity of masonry and protects the non-bearing walls at the limit load against damages, therefore cracks and partial damages cannot provoke a general structural collapse, which reduces the cost of eventual reconstruction

- Ensures a uniform distribution of stresses in walls

- Sustainable and eco-friendly material: energy consumption reduction; elimination of thermal bridges;

breathable walls therefore healthy and comfortable room climate without condensation or mold

- The retrofitting system impresses with its easy use and low cost

APPLICATION ON A BUILDING OF GROUND FLOOR +7 FLOORS

Building structure composed by Columns and Slabs of Steel reinforced Concrete. The partition walls are hollow block masonry walls.

Four chosen masonry walls were retrofitted, two in each direction X and Y, by simply applying one Fiber reinforced SismaCalce System.

The application of the System transformed these masonry walls into shear walls.

The hollow block Masonry walls problem is that they are FRAGILE like glass; they brake and crumble suddenly due to the lack of Elasticity and Plasticity.

Reinforced Sisma Calce system, is to bind to the wall to become "one body" with it, and to impart DUCTILITY to the wall, giving it Elastic and Plastic properties.

The seismic Forces and displacements design using simple Force Method give the Base Shear Strength, V = 1360 KN in each directions X and Y, and all other strengths and stresses.

When masonry walls are (superposed) from top to foundations, for example the external walls, these walls are considered load bearing walls holding part of the vertical load: tiles and secondary partitions; let us say 2 KN/m2 as minimum load.

The vertical load in the wall by linear meter, for one floor is **p**, minimum = 12 KN / lm / floor, and In the ground floor masonry wall, under 7 floors loads: **p**, minimum= 84 KN /lm. If the wall thickness **t** is 20cm. The vertical weight stress in the wall is $_v = 0.42$ MPa.

In the above table: "Material Properties of different Stones", $f_{vk0} = 0.2$ MPa for 20cm concrete hollow block, see above "Damage Case b) Shear sliding".

			SEE /
Before	Sisma	Calce	Coating:
Initial aba an atua an m	aistanas in tha hlas using Mahn	instance f f 101	

Initial shear stress resistance in the bloc, using Mohr circle equation: $\mathbf{f}_{vk} = \mathbf{f}_{vk0} + \mathbf{0.4}_{vk0}$

After Sisma Calce Coating on one side of the wall (n=1): $f_{Rvk0} = f_{vk0} + n \ 6.71 / t = 0.263$ and the Shear stress resistance in the wall, $f_{Rvk} = f_{Rvk0} + 0.6$ v = 0.515 MPa

In the Ground Floor, in X direction, <u>L</u>, being needed one face retrofitted wall Length. Base Shear Strength V = 1360 KN < = f_{Rvk} . t. L. 2 (2 retrofitted walls), give L > = 6.6 m If we can make the coating on the 2 faces of the walls, L > = 3.3 m. The same issue in Y direction.

If the height of the walls is 3 m, the total coated area in Ground Floor to be retrofitted: 80 m2. The same calculation for the 6th floor gives 60 m2 of coated walls area to be retrofitted.

Traditional Old Houses

Let us consider a house composed by a Ground Floor + 2 upper floors, built with bearing walls of natural stones. Usually the walls of these houses are high (4m for ex). The same calculations as above, with $\mathbf{fvk0} = 0.12$ MPa for natural stone, gives L> 8m (1 face) / direction, or L>4m (double coats).