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ABSTRACT 

In this paper the finite element of beam element with arbitrary number of transverse cracks is derived 

for fatigue and fracture applications. The new element is one-dimensional with arbitrary number of 

embedded edge cracks in arbitrary position of beam element with any depth. The cracks are not physically 

modeled within the element, but instead, their influences on the local flexibility of the structure are 

considerated by the modification of the element stiffness as a function of the cracks depth and cracks 

position. The derivations are based on a simplified computational model, where each crack is replaced by a 

corresponding linear rotational spring, connecting two adjacent elastic parts. The components of the stiffness 

matrix for the cracked element are derived using the superposition principle, compatibility relations, and 

Betti’s theorem. The stiffness matrix for transversely cracked beam element is derived and all expressions 

are given in symbolic forms.  Models using the presented stiffness matrix are shown to produce accurate 

results, although with significantly less computational effort than physical modeling of the crack in 2D finite 

element models.  

INTRODUCTION 

Cracks in structures present a serious threat to proper performance of structures. Most of failures of 

presently used structures are due to material fatigue. Experimental and computational studies have 

demonstrated that the presence of cracks leads to a change of the vibration properties of these structures 

(Cacciola et al, 2003, Dimarogonas, 1996 and Krawczuk et al, 2000). Because, due to the crack presence, the 

structures miss their original stiffness. Monitoring the change of these properties over time represents a 

widely used nondestructive method of evaluating the severity of the damage and computing the remaining 

life of structure. 

A detailed model of the crack and its surrounding can be properly obtained with an appropriate mesh 

of finite elements. From a computational viewpoint, the finite element method represents a standard 

approach to simulate how cracked structures treat under external loading. The majority of these methods 

introduce the crack by physically modeling the separation of the two crack faces. A major disadvantage of 

these methods is that they necessitate the allocation of significant computational efforts in order to accurately 

model the stress singularity at the crack tip. However, such an approach is unsuitable for inverse problems 

where a model suitable for crack location and depth modification is required when searching for a potential 

crack. 

For some applications, the global response of a cracked structure is of interest, while the local 

behavior of the material in the vicinity of the crack tip can be disregarded. In such cases there is a need for 

simulating the crack presence without actually modeling the crack. In this paper we present such an approach 

applied to a one-dimensional finite element that has arbitrary number of embedded cracks in different 



 

 

 

2                                                                                                 International Institute of Earthquake Engineering and Seismology (IIEES)  

 SEE 7 

 

positions of element with different depths. The conceptual illustration of the presented element with 

modified stiffness matrix is presented in Figure 1. The presence of the cracks is introduced by changing the 

stiffness matrix of the element. This type of element can be used in structural applications to compute 

response of a cracked structure under loading. Also it can be used for eigenvalue analysis of structures.  

 

 
Figure 1. Conceptual illustration for the new finite element: the cracks are removed from the physical model and the 

stiffness matrix is modified 

 

In this way simplified model, given by Ostachowicz and Krawczuk (1991) are implemented, where the 

crack is replaced by a rotational linear spring connecting the uncracked parts of the structure that are 

modeled as elastic elements. Ostachowicz and Krawczuk introduced the definition for rotational linear spring 

stiffness for a cracked rectangular cross-section.  

Therefore, in order to improve the efficiency of the existing computational model for transversely 

cracked beam elements, the paper considers the derivation of a new beam finite element and presents the 

derivation of a stiffness matrix for transversely cracked beams subjected to transverse loads. 

MACRO ELEMENT WITH ARBITRARY NUMBER OF TRANSVERSE CRACKS  

THE EQUIVALENT STIFFNESS FOR OPEN SINGLE- SIDED CRACK 

Open single sided crack is illustrated in Figure 2. Under service conditions cracks of this type occur 

under fluctuating loads.  

 

 
Figure 2. Single-sided crack (dimensions) 

 

 The equivalent rotational spring stiffness at the through-the-thickness single- sided crack location is 

presented as follows (Ostachowicz and Krawczuk, 1991): 
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 Where, d is crack depth, w is beam width or thickness, h is its depth of beam and E is modulus of 
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DERIVATION OF STIFFNESS MATRIX 

The derivation of the new finite element is based on a mathematical model for a beam element with 

arbitrary number of transverse cracks as given by Ostachowicz and Krawczuk (1991). The cracks are 

introduced as a rotational linear spring connecting two elastic uncracked parts (Figure 3) and is defined by its 

location (i.e. the distance L from the left end that 10  ) and depth d that is modeled with  rotational 

spring stiffness  denoted with S that depends on w,d,h and E. 

 

 
Figure 3.  Beam element with arbitrary number of transverse cracks 

  

The stiffness matrix in general represents the relationship between the forces (and moments) and the 

corresponding displacements, i.e. transverse translations and rotations at the ends of the beam element. The 

basic idea is the superposition principle.  

Considering only transverse displacements, and with disregarding axial deformation in beam elements, 

the finite element has 4 degrees of freedom. This consequently means that 2 degrees of freedom must be 

simultaneously removed. Consequently, 4 degrees of freedom have to be considered to obtain all the required 

coefficients of the stiffness matrix. Nodal degree of freedom consist of lateral translation 1 and 2  and 

rotations 1z and 2z about the z axis (normal to paper).  

The element stiffness matrix K can be constructed column by column. To obtain terms in a column we 

must solve statically indeterminate beam problem. For derivation of terms in a column in stiffness matrix, 

d.o.f(degree of freedom) of element corresponding to that d.o.f. moved unit value in direction of that d.o.f. 

and another degree of freedoms is constrained. Nodal forces and moment that must be applied to sustain a 

deformation state in which that d.o.f. has unit value and all other d.o.f. are zero, are labeled according to their 

position in K and with proper algebric sign: positive directions are upward for translation and force and 

counterclockwise for rotation and moment(Figure 4).  

This results in a statically indeterminate beam problem, which is solved using the superposition 

principle, compatibility relations and Betti’s theorem [5] in this paper. In this way, simple formulation of 

translation and rotation at the end of the cantilever beam under concentrated transverse load (P) and 

concentrated moment (M) is used. Relations of defection (  ) and slope of deflection ( ) caused by moment 

at the end of the cantilever beam under concentrated loading applied to end of beam are as follows: 
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in which, P is concentrated transverse load, L is beam length, I is the moment inertia and E is modulus 

of elasticity. Also, relations of defection (  ) and slope of defection ( ) caused by moment at the end of the 

cantilever beam under concentrated moment applied to end of beam are as follows: 
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Figure 4. (a) Beam element and its nodal d.o.f. (b) Nodal load associated with d.o.f. (c-f) Deflected shapes associated 

with activation of each d.o.f. in turn. Nodal loads are labeled according to their position in K 

 

in which, M is concentrated moment, L is beam length, I is the moment inertia and E is modulus of 

elasticity. Also, defection ( ) caused by shear force at the end of the cantilever beam under concentrated 

transverse loading applied to end of beam is as follows: 

 

SGA

PL
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in which, ( SA ) is the shear cross section, P is the concentrated transverse load and G is the shear 

modulus of elasticity. 

DERIVATION OF FIRST COLUMN OF STIFFNESS MATRIX FOR SAMPLE 

In order to derive the first column of K , the left support is moved as the unit value in the direction of 

the first DOF, whereas other DOFs are constrained (Figure 5(a)). In this state, forces and moments in nodal 

DOF are corresponded to first column of matrix. In this stage, we use superposition principle, and apply 11k  

and 21k  separately and satisfy compatibility equations (Figure 5(b) and (c)). 

1  and 1  in Figure 5(b) are calculated using Equations (4)–(8) as follows: 
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2  and 2  in Figure 5(c) are calculated using Equations (4)–(8) as follows: 
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Figure 5. (a) activation of first d.o.f. unit value .Nodal loads are labeled according to first column in K (b-c) applying 

nodal loads separately. 

 
With writing compatibility equations of rotation, we can write as follows: 
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DERIVATION OF OTHER COLUMNS OF THE STIFFNESS MATRIX 

The remaining columns of K may be simply derived using the same procedure as the First column. 

Consequently, the closed-form of the stiffness matrix may be given as follows: 
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MASS MATRIX OF CRACKED ELEMENT 

Since it was stated by Krawczuk et al (2000) in dynamic analysis of beam like structures the inertia 

matrix for non-cracked structures can be conveniently used for cracked elements, for mass matrix of cracked 

element we can use of mass matrix of sound element. 

VERIFICATION OF THE NEW CRACKED MACRO ELEMENT BY 2D FINITE ELEMENT RESULTS 

The proposed cracked macro element is verified considering various loadings, and boundary 

conditions of cracked beams. Results from a 2D finite element model are employed to confirm the accuracy 

of the present cracked beam element. All the cracked beam models are made of a material with the following 

properties: the modulus of elasticity E = 200 GPa, the material mass density = 7800 kg/m3, and the Poisson 

ratio  = 0.3. The considered geometric data are: the beam length L=4m, the cross-section of the beam is a 

rectangle with depth h = 200mm and width w = 100mm. Three single-sided transverse cracks with depths 

d = 60 mm, d=100 mm and d=80 mm are located at distances 1.25m,1.5 m and 1.75 m from the left support, 

respectively.  
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(a) 

 
(b) 

Figure 6. The loadings and boundary conditions for the static and eigenvalue analysis of the cracked beam. 

CONVERGENCE TEST OF FINITE ELEMENT MODELS 

It should be noted that blind application of finite element model to solve eigenvalue problem for 

finding the natural frequencies, without considering the assumptions under which the crack models are 

derived, may lead to remarkable errors. For the finite element models of the present research, the beam is 

discretized by four-node isoparametric plane-stress elements. In this element, drilling DOFs are employed to 

improve the behaviour of the element in bending vibration problems (Zienkiewicz and Taylor, 2000). In each 

example, the mesh density has been examined by the convergence test (Zienkiewicz and Taylor, 2000) for 

cracked and uncracked beams. The results of convergence test determine the suitable and enough fine 

meshes whose natural frequencies are almost identical to exact natural frequencies available for uncracked 

beams (Timoshenko et al, 1974). As a result, in the next sections, the most appropriate finite element meshes 

have been chosen based on the results of corresponding convergence tests in each example. For these 

examples, the 2D finite element model consists of 8000 four-node quadrilateral elements and the new finite 

element model consists of four new beam elements. 

STATIC ANALYSIS 

In this section, two different combinations of loadings and boundary conditions are presented to 

validate the proposed cracked macro element in static analysis. In the first combination, a cantilever beam 

was considered (Figure 6(a)). The beam is under a transverse uniformly distributed loading of 25 kN/m 

throughout the beam.. In the second combination, a simply supported beam with a transverse concentrated 

load of 100 kN at the middle point of the beam is studied (Figure 6(b)). Both combinations are modeled 

using four new finite elements with the length of 1m (Figure 7). After driving stiffness matrix for all 

elements, stiffness matrixes were assembled and then with using below relation displacements and rotations 

were drived: 
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FKD  1  (17) 

Where D  is displacement vector and K  is the stiffness matrix and F  is load vector. 

The transverse displacements and rotations at points A, B, C, D and E are obtained using the new element 

and the 2D finite element analyses (Section 3.1). Table 1 gives the comparison between the results of two 

methods. As may be seen from Table 1, the results of two methods present good agreement. 

 

 
Figure 7. The cracked beam modeled by four cracked .nite elements (10 DOFs). 

EIGENVALUE ANALYSIS 

In this section, two boundary conditions of Section 3.2 are considered to verify the proposed cracked 

macro element in eigenvalue analysis. Since from numerical point of view the form of the inertia matrix does 

not affect natural frequencies (Krawczuk et al, 2000), in eigenvalue solution is used from mass matrix of 

uncracked beam element that can be found in all standard books about finite elements. Also with using 

below equation modal analysis was performed, and the natural frequencies for the first three vibration modes 

were computed: 

02  MK   (18) 

Where K  is the stiffness matrix and M  is the mass matrix and  is frequency of structure. 

In addition, the same meshes of Section 3.2 are used in these analyses to compute the natural 

frequencies for the first three vibration modes of each boundary condition (see Table 2). As may be seen 

from Table 2, the results of two methods present good agreement. 

 
Table 1. Comparison of transverse displacements and rotations obtained from new cracked macro element and 2D finite 

element for considered examples. 
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Table 2. Comparison of natural frequencies (HZ) obtained from new cracked macro element and 2D finite element for 

considered examples. 

 

CONCLUSIONS 

A new macro element is derived for the analysis of Timoshenko beams with transverse cracks. For 

driving stiffness matrix for cracked beam element with arbitrary number of cracks, cracks were modeled with 

torsional spring and for their rotational stiffness was used of relation presented by Ostachowicz and Krawczuk 

for open cracks and influence of the flexibility of the element due to the cracks presence was derived using the 

superposition principle, compatibility relations, and Betti’s theorem.The accuracy of the new macro element 

was verified by comparing the displacements and rotations and frequency response of a beam with three edge 

crack through via two example. In both examples the beam was modeled using new macro element account for 

the crack presence, and also by physically modeling the cracks in 2D finite element meshing. The new macro 

element produced excellent results when compared with those from the physical crack model. The proposed 

model has two limitations. The first limitation of the presented finite elements is the absence of information 

about stress distribution in the vicinity of the cracks. Therefore, in situations where this information is essential 

(for the crack propagation analysis) this model cannot be applied. However, from the pure inverse identification 

point of view, this limitation is not essential, as the non-propagation of cracks is assumed during the analysis. 

The second limitation of the presented finite elements is the analytical formulation of the cracked element takes 

into account the reduction in stiffness only for the case of open cracks. The stiffness change of an element with 

closed cracks is not analyzed in this paper. 
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