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ABSTRACT 

This paper presents an effective computer-based pushover analysis technique for the performance-

based design of concrete frames to predict post-elastic seismic demands under equivalent static earthquake 

loading. Using an energy approach, the performance-based optimization of concrete moment resisting frames 

is evaluated for the so-called operational, immediate occupancy, life safety and collapse prevention 

performance levels. Three objective criteria are identified for the performance-based seismic design, which 

include the least structural weight, uniform ductility demands and also uniform earthquake energy for all the 

stories. The results obtained for three- and five-story concrete moment frames and compared with the 

dynamic behavior of these buildings. 

INTRODUCTION 

The concept of the performance-based structural design based on seismic loading conditions was 

introduced recently in the literature as (FEMA-273, 1997). To assess the structural performance, the 

guidelines recommend the use of various methods of analysis including linear static, nonlinear static, linear 

dynamic and nonlinear dynamic. It is common to use the pushover analysis method for its simplicity and its 

ability in estimating, with acceptable accuracy, the component, and system deformation demands, without 

the intensive computational and modeling efforts involved in a dynamic analysis. Therefore, in the 

performance-based structural design, a nonlinear static procedure is implemented in the analysis to estimate 

the seismic structural deformations.  

In the performance-based design, the main objective is to consider the structural performance in 

resisting the earthquake loading in a quantifiable manner at various levels, and to achieve more predictable 

and reliable levels of safety and operability during natural hazards. 

A design performance level expresses the desired behavior of the structure under the design 

earthquake loads. In the performance-based seismic design codes, different performance levels have been 

defined. The performance levels are categorized according to (FEMA-356, 2000) as: operational (OP), 

immediate occupancy (IO), life safety (LS) and collapse prevention (CP). 

Perhaps Galileo was the first scientist who proposed the structural optimization idea in 1638 through 

the uniform strength criterion for a bent beam. This work was followed by other researchers such as 

(Maxwell, 1980).  

Performance-based optimum design of reinforced concrete buildings is a relatively new field of 

research. The performance criteria which are imposed as constraints, affect the initial construction cost that 
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has to be minimized. Based on this approach, perhaps the first effort to combine the contemporary concept of 

performance-based design with structural optimization came from (Ganzerli, 2000). They proposed an 

optimization methodology for seismic design, considering the performance-based constraints. Lagaros 

(2006) proposed an automated procedure for minimizing the eccentricity between the mass center and the 

rigidity center in RC structures. Furthermore, in the work by (Li and Cheng, 2001), the optimal decision 

model of the target value of performance-based structural system reliability of RC frames is established 

according to the cost-effectiveness criterion. 

In this paper, the performance-based seismic design of RC buildings using an optimization procedure 

is automated. To this end, the objective functions which have been used by Xu (1994) are reviewed with 

some modifications in the lateral load distribution, and also another objective function for unifying the story 

energy is presented. Optimization MATLAB® toolbox is used to find minimum of constrained nonlinear 

multivariable function. Finally, the FEDEASLab toolbox (2004) is utilized to study the responses of the 

optimized multistory structures, in a nonlinear dynamic analysis with elements of distributed inelasticity.  

NONLINEAR STATIC ANALYSIS (PUSHOVER) 

The Pushover analysis is a simple procedure for evaluating the response of a structure to the 

incremental lateral loadings. This procedure monitors the progressive stiffness degradation of a frame as it is 

loaded into the post-elastic range of behaviour. In this type of analysis, the lateral load distribution along the 

height of the frame is very important. For this reason, FEMA-273 (1997) has defined the lateral load 

distribution as follows: 
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Where Ps is the lateral load at the story level s; Cv,s is the lateral inertial load distribution factor; Vb is 

the  base shear; Hs and Hk are the heights from the base of the building to the story levels s and k, 

respectively; Gs and Gk  are the seismic weights for the story levels s and k, respectively; and µ is a constant 

number determined by the fundamental period of the frame calculated in each optimization step according to 

FEMA-273 (1997): 
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Here T is the fundamental elastic period of the structure. In the nonlinear static analysis, the 

distribution of lateral loads along the height of frame is determined by the fundamental elastic period of the 

structure. Since the elastic period is kept constant in each step of the optimization analysis and varies from 

one step to another, the load distribution should be modified during the analysis. Therefore, the structure's 

elastic period is determined in each step of the optimization and consequently the load distribution is 

updated. 

To predict the seismic demands of a building's frameworks under equivalent static earthquake loading, 

Xu (1995) proposed a new computer-based pushover analysis procedure. This procedure was originally 

conceived for the elastic analysis of steel frameworks with semi-rigid connections. Monfortoon and Wu 

(1963) modelled the connection at each end of a member as a linear spring and introduced the non-

dimensional ‘rigidity-factor’, r, as:  
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Where R is the rotational stiffness of the connection, and EI and L are the bending stiffness and the 

length of the connected member, respectively. The rigidity-factor is defined as the connection's stiffness 

relative to that of the attached member. 

The influence of the semi-rigid connection on the overall performance of a frame structure under 

increasing loads is accounted for through an incremental load analysis, presuming the nonlinear moment-

rotation relations which characterize the variation in the rotational stiffness of the semi-rigid connections 

under increasing moment (Xu, 1995). During the calculation of each finite load increment, the rotational 

stiffness, R, of each connection is assumed to be constant, and the rigidity-factor, r, is obtained through 

equation (3). Member stiffness matrices are obtained through equation (4) and provide the corresponding 

increments of the element moments and rotations: 

 
. .j j sj j gjK S C G C 

, (4) 

 

Here Gj and Cgj are the standard geometric stiffness matrix and the corresponding correction matrix, 

respectively; Sj is a standard elastic stiffness matrix for the member having ‘rigid’ end-connections; and Csj 

is a correction matrix (see the appendix). 

To monitor the progressive plastification (stiffness degradation) of the frame members under 

increasing loads, a plasticity factor can be used. To this end, a nonlinear moment-rotation (M- ) relation 

that characterizes the variation in post-elastic flexural stiffness of a plastic-hinge section under increasing 

moment, figure (1), should be adopted. 
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Upon differentiating equation (5) with respect to , the post-elastic flexural stiffness,
PR , is defined as: 
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Where 
,y PM M

are the first-yield and fully-plastic moment capacities of the member, and P  and   

are the fully plastic rotation and the extent of post-elastic rotation, respectively. According to the design 

variables, the values of 
,y PM M

should be changed. As shown in figure (2), yM
 for a moment hinge (no axial 

force) can be expressed in terms of the reinforcement ratios (Zou, 2005) as: 
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Where cf  is the stress at the concrete's extreme compression fiber; yf
 is the yield strength of the steel; 

  is the tension steel reinforcement ratio; B is the width of the concrete section; d is the effective depth; d   

is the distance from the extreme compression fiber to the centroid of the compression steel; and k is the 

neutral axis depth factor at the first yield as expressed below: 

 

2 2( ) 2( ) ( ) , ,s s

sc sc sc

A Ad
k n n n

d Bd Bd
       


            (8) 

 

Where nsc is the ratio of the modulus of elasticity of steel to that of concrete, and 

 is the compression 

steel reinforcement ratio. For simplicity, Mp can be approximately related to yM
 (Zou, 2005) as: 
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For the case of combined bending moment M and axial force N, the presence of the axial force can be 

accounted for through the reduction in the moment capacity of the member cross-section due to the 

following interaction constraint equation with the lower and upper bounds that represent the first-yield and 

fully-plastic phases, respectively: 
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 is the section shape factor, PN  is the fully-plastic axial force capacity, and a is a 

constant which depends on the section shape (a =1 in this study). 

Replacing the connection's rotational stiffness, R, with Rp in equation (3), the ‘plasticity-factor’, p, 

can be calculated which defines the degradation of the flexural stiffness of a member section with post-

elastic behaviour.  

By replacing the rigidity-factors, r, with the plasticity-factors, p, in the member stiffness matrices, Kj, 

the influence of the post-elastic section behaviour on the overall behaviour of a structure under increasing 

loads can be accounted for through an incremental load pushover analysis similar to a semi-rigid analysis.    

MULTI-OBJECTIVE OPTIMIZATION  

In many optimization problems, minimizing the structural cost is the most common design objective. 

Since a complete estimation of a building's real cost requires accurate information that is not readily 

available, the cost of the members is taken as the cost objective function. Usually, the total frame weight is 

assumed proportional to its material weight and thus the total construction cost can be interpreted based on 

the weight of the structure.  

For an RC building having n members with rectangular cross sections, where the member dimensions, 

Bi (width), and Di (depth), are fixed and the topology of a building’s structural system is predefined, the total 

weight of the reinforcing steel can be given by the formula: 
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Where x is the design variable vector required to be obtained in order to minimize the objective 

function; n is the number of elements; Lj is the length; ,s jA
and ,s jA

 are the top and bottom reinforcement 

areas of the jth member, respectively; and   is the material density. The weight function, can be normalized 

by the maximum possible weight of the frame, (Wmax=894.70 kN). 

The response of a structure under earthquake loading shows that the deformation concentration at a 

weak story leads to the structure's collapse. Therefore, it can be concluded that a uniform interstory drift 

results in less damage to the building. Thus, the interstory drift is regarded as the primary parameter in 

evaluating the structural performance.  

 
Figure 1: Post-elastic moment-rotation relation 

for plastic hinges 

 
Figure 2: Doubly reinforced member section at first yield 
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With the uniform interstory drift, the stories of a building sustain identical damages and thus the 

structural efficiency improves. To enhance the structural performance, another objective function is defined 

in terms of the interstory drift at the CP performance level which was defined by (Xu, 1995) as:  
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Where ns is the number of stories; Hs and H are the distances from the building ground level to the 

story s and the roof, respectively; while ( )CP

sv x  and ( )CP x  are the lateral translations of the story s and the 

building roof at the CP performance level, respectively.  

All the contemporary seismic design procedures are based on the fact that the extent of damage sustained 

by a structure under earthquake loads depends on the energy absorption capacity of the structure, and that a 

favourable design allows for the absorption and dissipation of the kinetic energy through inelastic deformation. In 

this regard, and in order to unify the story energy, another objective function can be written as: 
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Where Mij and ij
 are the moment node and nodal rotation in the ith story and the jth vertical row, 

while nf is the number of spans+1. If the energy distribution in all the stories is the same, the amount of the 

optimized function f3 is equal to zero.   

Applying the three above functions simultaneously in the structural optimization, the general objective 

function can be expressed as: 
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where 1 , 2  and 3  are the combination factors for the function f1, f2 and f3 which together form the 

general function. To account for the portions of the weight function, f1, the drift function, f2 and energy 

function, f3, some numerical experiments should be conducted to avoid premature weight convergence.  

The steel reinforcement, affects the ductility of RC frames under the inelastic seismic loads, so it is 

considered as a design variable in the optimization process. Assuming that adequate shear capacity strength 

is provided for each member, only the longitudinal flexural reinforcement of the member sections is taken as 

a design variable, and the transverse shear reinforcement is considered as invariant. For simplicity, the 

compression steel area, sA , is assumed to be the same as sA  for beams and columns such that the two steel 

areas can be reduced to one design variable for each member. 

In a design optimization procedure, sizing variables may be continuous or discrete. Here, the design 

variables are assumed to be continuous between an upper and a lower limit. 

DESIGN CONSTRAINTS 

In order to control the performance of the structure, constraints are added in the process of 

optimization as follows: 
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Where s is the interstory drift of the story s (i.e., 1s s sv v   , the difference between the drift sv at 

the story s and the drift 1sv   at the story s-1); is the allowable interstory drift; and  and  are the roof drift 

and the allowable roof drift, respectively. 

In the design process, all the beams and columns are treated as beam-column members and all the 

inelastic deformations are assumed to occur at the plastic hinges which are located at the ends of each frame 

member, and also the members are assumed to be fully elastic between the plastic hinges. The lower and 

upper limits of 0.5% and 2% are imposed on the values of the design variables for the tension reinforcement 

steel ratios, based on the concrete building codes.  

EXAMPLE: FIVE STORY 

According to (FEMA-273, 1997), the base shear in each performance level is: 
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Where W is the seismic weight of the structure; g is the gravitational acceleration; and 
i

aS  is the 

spectral acceleration for each performance level that can be expressed as in (FEMA-273, 1997), 
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Here T is the elastic period of the structure; T0i is the period at which the constant acceleration and 

constant velocity regions of the response spectrum intersect for the design earthquake associated with the 

performance level i; and 
i

sS  and 1

iS are the corresponding short-period and one-second period response 

spectrum parameters, respectively.  

The concrete moment frame which is considered in this example, is a five-story, five-bay frame as shown 

in figure 3. The framework consists of 55 members and 20 design variables, A1-A20. According to (FEMA-356, 

2000), the allowable interstory drifts,  , are taken as 0.01h, 0.02h and 0.04h for the IO, LS and CP levels, 

respectively. Also, the allowable roof drifts,  ,  for the IO, LS and CP levels are assumed as 0.01H, 0.02H and 

0.04H, respectively. h and H are the heights from the base of the building to each story and the roof, respectively. 

 

 
Figure 3: Example: five-story five-bay moment 

frame 

 
Figure 4: Weight evolution during optimization 

process. 
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DISCUSSION AND CONCLUSIONS 

The results here are based on the three assumed values for  and  as follows: 

iiiiii

The optimized cross sections and weights in the three above cases are presented in table 1. Figure 4 shows 

the weight evolution during the optimization process for case i. As is shown in figures 5, the drift 

distributions along the frame height for the three cases (i, ii, iii), as related to the OP, IO and LS levels are 

alike.  

 

  

 
 

Figure 5: drift distribution in IO, LS and CP. 

 

However, since f2 and f3 are defined for the CP level, there are some differences between drift 

distribution results for the three mentioned cases. In order to evaluate the damage sustained for each case, a 

damage index has been defined as: 
 

1

(1 )

,

PH

i

i

P

DMI
PH








 

(18) 

 

Where PH  is the number of hinges, and Pi is the plasticity factor of the i
th
 hinge. To find the best case, 

an efficiency factor can be expressed as:  
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Where Wopt,i is the optimum weight of the i
th
 case. In table 1 the efficiency factor for the three cases are 

compared. As the results show, the maximum value of EFi is for the case iii in which the energy function is 

included. 
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Table 1: Optimum weight, efficiency factor and last drift for five story frame 

 i ii iii 

Weight (kN) 
271.7594 271.995 289.7537 

Efficiency factor 
0.200565 0.296299 0.439899 

Last drift (cm) 
-3.8054786 -4.1296816 -3.6668146 

 

For comparison with the real behavior, nonlinear dynamic analyses for the optimized frames with 

elements of distributed inelasticity are performed for fifty year period earthquakes, with 2% intensity 

(Erzincan, Turkey record) and the results are shown in figure 6.  

 

 
 

 

Figure 6: Time history of horizontal roof displacement under nonlinear transient response with distributed inelasticity 

element (cm), (a): case i, (b): case ii, (c): case iii. 

 

The last drifts (the residual drifts after the ground motion stops) in the three cases have been compared 

in table 1. Since there are some constraints on the steel reinforcement areas and the story drifts in accordance 

with the current codes, the differences among the results for various performance levels are not as high.  

As is shown, the optimization process on the basis of the energy function, f3, leads to a decrease of 

pulse intensity and the last drift and therefore, moderates the frame response. This case verifies that minor 

damage occurs in these frames compared with the optimized frames in cases i and ii. 
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