THE FUNDAMENTAL PERIOD OF FOUR-LAYER SOIL DEPOSITS

Seyed Hashem MEDHAT SEFVATI
M.Sc. Graduate of Geotechnical Engineering, Department of Civil Engineering, Semnan Branch,
Islamic Azad University, Semnan, Iran
hashe.medhat@gmail.com

Mohsen KAMALIAN
Professor, Geotechnical Engineering Research Center, IIEES, Tehran, Iran
kamalian@iiees.ac.ir

Keywords: Fundamental period, Amplification function, Analytical solution, Four-layer soil deposit, SHAKE, Shear wave velocity

Significant role of local geological condition in associated damage of destructive earthquakes to engineered structures has been well confirmed. Furthermore, carried out investigation by Seed et al. (1974) showed that tall buildings located on deep or soft deposits may be exposed to higher amount of seismic forces than similar buildings on rock (if the peak ground acceleration is the same in both cases). Therefore, employing a parameter which is capable of providing an appropriate description of local soil geology is a vital issue in geotechnical earthquake engineering. Average shear wave velocity in the upper 30 m of the soil deposit \( v_{30} \) is utilized by Iranian Seismic Code (BHRC, 2007) for site classification. On the other hand, Zhao (2011) indicated that fundamental period of surface layer above bedrock is more dependable criteria than \( v_{30} \) for prediction of amplification ratios particularly in long period deposits. Consequently, different methods for estimation of fundamental period of soil deposits has become the subject of considerable interest and research. In this regard, Dobry et al. (1976) presented closed form solutions and approximate approaches for estimation of fundamental period. Moreover, a comprehensive review of various solutions was conducted by Medhat Sefvati and Kamalian (2018). Among gathered solutions lack of accurate one which is straightforward and does not require iteration procedure for layered soil profiles is evident. In this context, Medhat Sefvati (2016) acquired an equation by means of analytical solution for exact calculation of natural periods of three-layer deposits. In the same spirit, a system including four undamped homogeneous soil layers on a bedrock is considered (Figure 1).

\[
\begin{align*}
\rho_1, h_1, v_{s1}, T_1 &= \frac{4h_1}{v_{s1}} \\
\rho_2, h_2, v_{s2}, T_2 &= \frac{4h_2}{v_{s2}} \\
\rho_3, h_3, v_{s3}, T_3 &= \frac{4h_3}{v_{s3}} \\
\rho_4, h_4, v_{s4}, T_4 &= \frac{4h_4}{v_{s4}}
\end{align*}
\]

\textit{Figure 1. four-layer soil profile.}

\( \rho, h, v_{so} \) are representative of mass density, thickness and shear wave velocity of soil layers in which \( n \) is the number of layers. In case of vertically SH waves propagation general solution for a steady state harmonic motion with frequency \( \omega \) is obtained and boundary conditions are satisfied. Amplification function \( AF_1(\omega) \) is achieved as the ratio of the amplitude of motion at free surface (point A) to the amplitude of motion at interface between soil and rock (point B) (Figure 2).
Amplification function becomes infinite (resonance condition) at natural periods. Therefore, the denominator of amplification function is made equal to zero and desired equation for estimation of natural periods is acquired.

\[
q_1 \tan(\Xi_1) \tan(\Xi_2) + q_2 \tan(\Xi_2) \tan(\Xi_3) + q_3 \tan(\Xi_3) \tan(\Xi_4) \\
+ q_4 q_2 \tan(\Xi_1) \tan(\Xi_3) - q_4 q_3 \tan(\Xi_2) \tan(\Xi_3) \tan(\Xi_4) \\
+ q_4 q_3 \tan(\Xi_2) \tan(\Xi_4) + q_4 q_2 q_3 \tan(\Xi_1) \tan(\Xi_4) = 1
\]

where \( \Xi_1 = \frac{\pi T_1}{2 T} \), \( \Xi_2 = \frac{\pi T_2}{2 T} \), \( \Xi_3 = \frac{\pi T_3}{2 T} \), \( \Xi_4 = \frac{\pi T_4}{2 T} \) and \( q_1 = \frac{\rho_{V_s1}}{\rho_{V_s2}}, q_2 = \frac{\rho_{V_s2}}{\rho_{V_s3}}, q_3 = \frac{\rho_{V_s3}}{\rho_{V_s4}} \).

Among different values for \( T \) in Equation 1, the highest one is representative of fundamental period corresponding to the first mode. Results of the examined four-layer profiles by the proposed equation are in good agreement with Schnabel (1972). Accurate performance of the presented formula stems from its ability to consider the position of layers in soil deposits and is significant with respect to the approximate methods, which apply average properties of layers. Furthermore, iterative procedure is not needed in solving process.

REFERENCES


