INVESTIGATION OF ADEQUACY OF SEISMIC CODE REQUIREMENTS FOR MASONRY BUILDINGS DAMAGED DURING EZGELEH KERMANSHAH, IRAN EARTHQUAKE (2017)

Arash GHEZELBASH KOHA
M.Sc. Student, Department of Civil Engineering, University of Bojnord, Bojnord, Iran
anewversion25@gmail.com

Mahdi ADIBI
Assistant Professor, Department of Civil Engineering, University of Bojnord, Bojnord, Iran
mahdi.adibi@gmail.com

Keywords: Masonry building, Seismic behavior, Failure modes, Ezgeleh Kermanshah earthquake

There are many buildings made by masonry materials in Iran. Different seismic codes have provided a variety of obligatory requirements for masonry constructions. In this study the effect of using the obligatory requirements for masonry constructions was investigated. Therefore, seismic behaviour of some of the masonry buildings damaged in Ezgeleh, Kermanshah earthquake were evaluated and compared by seismic codes. The damage modes observed in the represented buildings were: shear cracks, sliding shear failure, buckling of the ties and crushing of the toe in the walls. Seismic codes including in this study are Iranian code for design and construction of masonry building, TMS 402-11/ACI 530-11/ASCE 5-11 and seismic design code of Iran (2800). Also two masonry buildings damaged during the earthquake investigated analytically by using time history analysis. The results of the research show that applying some of the requirements included in the represented seismic codes do not guarantee the structural elements in the masonry building from damage.

<table>
<thead>
<tr>
<th>Surveyed buildings</th>
<th>Building characteristics</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Story</td>
<td>Height</td>
</tr>
<tr>
<td>Estesenai School</td>
<td>2</td>
<td>7.3</td>
</tr>
<tr>
<td>Agricultural organization building</td>
<td>1</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Figure 1. Damaged masonry building of Estesenai School in Sarpol-e Zahab city in Ezgeleh Kermanshah earthquake.

Table 1. Observed failure modes surveyed in the masonry buildings damaged during Ezgeleh Kermanshah earthquake (2017).
a. Diagonal shear cracking in the wall
b. Sliding shear failure in the wall
c. Crushing of the toe in the wall
d. Buckling of the ties

Figure 2. Different damage modes in masonry building.

REFERENCES

American Society of Civil Engineers (2014). *ASCE 41, Seismic Rehabilitation of Existing Building*. Reston, Virginia.