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Structures designed by current seismic codes usually undergo large deformations in severe earthquakes since in these 

codes the design procedure is based on the elastic analysis and the inelastic behavior of the structure is considered 
indirectly by using R-factor (Leelataviwat et al., 1999; Goel et al., 2010). Experience of past severe earthquakes shows 
that these structures go under large deformations unpredictably or they even collapse. These problems lead the researchers 
to develop design procedures with higher levels of performance, safety of an economy (Chao and Goel, 2006; Jonathan et 
al., 2002). In order to gain these goals, the design parameters such as lateral force, the strength of members, desired yield 
mechanism, lateral displacement, etc., should be considered in design procedures initially. One of the methods which 
considers the inelastic behavior of the structure is Performance-Based Plastic Design (PBPD) developed by Goel et al. 
(2010). Results of inelastic static and dynamic analysis done by researchers on frames design by this method show a high 
level of seismic performance. 

This study aims to investigate the effect of forward-directivity as one the significant characteristics of near-fault 
records (Khaloo et al., 2015; Nicknam et al., 2013) on the inelastic response of EBF structures designed based on PBPD 
method in the form of changes in the ductility demand and reduction factor. Eccentrically braced frames (EBF) combines 
the advantages of Moment-Frame (high ductility) and Concentrically Braced-Frame (lateral stiffness). While eliminating 
the shortcomings of those frames by limiting the inelastic activity to ductile shear links and keeping braces essentially 
elastic without buckling, thus maintaining high lateral stiffness during earthquake events. 

In this study, two 12- and 18-story EBF frames were first designed based on current seismic code (Standard No. 
2800, 2013) and then these frames were designed using the PBPD method. All frames were analyzed versus 12 near-
fault records having predominant forward directivity effect. The IDA analysis approach (Vamvatsikos and Cornell, 
2002) was used to determine the changes in ductility demand and reduction factor for the above-mentioned structures 
subjected to directivity pulses. Because of high levels of energy imposed by the records with forward-directivity effect, 
all frames exceeded the allowable drift. Figure 1 shows the result of the 18-story frame versus the Chi-Chi earthquake 
as a sample. 

Consequently, the variation of ductility demand and reduction factor for the selected frames, the two design 
methods and the mentioned near-fault records will be calculated and reported.  
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Figure 1. Comparison of maximum inter story drift ratio (e.g. Chi-Chi-TCU075). 

 
 


