

## ESTIMATION OF THE SOURCE PARAMETER FROM ACCELERATION SPECTRA OF THE TAZEHABAD-KERMANSHAH EARTHQUAKE 2018

Saman AMIRI Ph.D. Candidate, IIEES, Tehran, Iran samanamiri0@gamil.com Majid MAHOOD

Assistant Professor, IIEES, Tehran, Iran m.mahood@iiees.ac.ir

Keywords: Source parameters, Shear wave, Quality factor, Strong motion data

Strong earthquakes occurred on August 26, 2018 ( $M_W$  5.9) in the Kermanshah Province, West of Iran. High-frequency strong-motion data of this earthquake has been analyzed to determine the source parameters and  $Q_\beta(f)$  by inversion of the recorded data. We have used the data from a local network of 26 acceleration records for the main shocks to estimate Q-relationship in 26 stations. The seismic hazard map for this region illustrates that most of the area in this province is located within high relative risk and characterized by a large number of heterogeneities. For frequency band of 1 to 20 HZ, the frequency-dependent attenuation for this region found to be  $Q_\beta(f) = (101 \pm 19) f^{(0.76 \pm 0.05)}$ . The authenticity of achieved  $Q_\beta(f)$  relation is checked by comparing the source spectra in various stations with the theoretical spectra. Low values of the coefficient (Q < 200) in the  $Q_\beta(f)$  relation suggest that the region is seismically and tectonically active. According to table (1), as expected radius rupture has inversely proportional to the corner frequency.

| No. | Station Name   | Corner Frequency (f <sub>c</sub> ) | Stress Drop ( $\Delta \sigma$ ) | <b>Radius Rupture</b> |
|-----|----------------|------------------------------------|---------------------------------|-----------------------|
| 1   | Degaga         | 0.23                               | 23.71                           | 5.31                  |
| 2   | Shoeisheh      | 0.12                               | 4.32                            | 10                    |
| 3   | Qasr-e Shirin  | 0.16                               | 10.04                           | 7.82                  |
| 4   | Kamyaran       | 0.25                               | 38.71                           | 5.06                  |
| 5   | Sarpol-e Zahab | 0.21                               | 23.11                           | 6.01                  |
| 6   | Palangan       | 0.34                               | 98                              | 3.76                  |

Table 1. Source parameter in some random stations.

## **INVERSION**

Organizing inversion matrix is the first step in the inversion methods. In this article, we use an inversion scheme for obtaining frequency-dependent  $Q_{\beta}(f)$  by using least-squares inversion technique for a nonsingular matrix and singular value decomposition technique for a singular matrix. The advantage of using strong-motion data for the inversion is that it includes valuable high-frequency near-field data suitable for engineering use.

The acceleration spectra of shear waves at a distance R due to an earthquake of seismic moment  $M_0$  can be given as (Boore, 1983; Atkinson and Boore, 1998):

A(f)=C. S(f).D(f)

(1)

where C is constant at a particular station for a given earthquake, S(f) represents the source acceleration spectra, and D(f) denotes a frequency-dependent diminution function that modifies the spectral shape and is given as (Boore and Atkinson, 1987):

$$D(f) = \left[\frac{e^{\frac{-\pi fR}{\beta Q(f)}}}{R}\right] P(f, f_m)$$
(2)

 $C = M_0 R_{\theta\phi}. FS. PRTITN / (4 \pi \rho \beta^3)$ 

I matrix can be represented in the following form:

## GM = d

(4)

(5)

(3)

Model parameters are contained in the model matrix M, and the spectral component is in the data matrix d. Inversion of the G matrix using Newton's method gives the model matrix M as:

$$Mest = (G^T G) - 1 G^T d$$

By implementing inversion on records, the average  $Q_{\beta}(f)$  relationship is obtained by using the average of  $Q_{\beta}(f)$  values. The average values of  $Q_{\beta}(f)$  for region stations are given in Table 2. The iterative inversion was performed at each station independently.

| No. | Station Name   | Corner Frequency (f <sub>c</sub> ) |
|-----|----------------|------------------------------------|
| 1   | Degaga         | $Q_{\beta}(f)=181f^{0.52}$         |
| 2   | Shoeisheh      | $Q_{\beta}(f)=113 f^{0.84}$        |
| 3   | Qasr-e Shirin  | $Q_{\beta}(f)=139f^{0.64}$         |
| 4   | Kamyaran       | $Q_{\beta}(f) = 75 f^{0.83}$       |
| 5   | Sarpol-e Zahab | $Q_{\beta}(f) = 79f^{0.73}$        |
| 6   | Palangan       | $Q_{\beta}(f) = 66f^{0.96}$        |

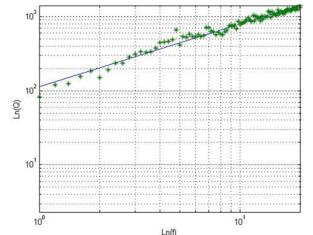



Figure 1. The rate of change of  $Q\beta$  versus frequency in Shoeisheh station.

## REFERENCES

Boore, D.M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. *Bull. Seism. Soc. Am.*, 73, 1865-1894.

Boore, D.M. and Atkinson, G.M. (1987). Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in eastern North America. *Bull. Seism. Soc. Am.*, 77, 440-467.

